Answer:
y = -2x^2 - 4x - 1
Step-by-step explanation:
We can see that the graph passes through (-2, -1), (-1, 1) and (0, -1).
Let's solve
ax^2 + bx + c = y
a(-2)^2 + b(-2) + c = -1
4a - 2b + c = -1
a(-1)^2 + b(-1) + c = 1
a - b + c = 1
a0^2 + b0 + c = -1
c = -1
we got c = -1 so we input it into the other 2
4a - 2b - 1 = -1
4a - 2b = 0
2a - b = 0
2a = b
a - b - 1 = 1
a - b = 2
a = b + 2
Let's input b = 2a
a = 2a + 2
-a = 2
a = -2
b = 2a = 2*(-2) = -4
c = -1
y = -2x^2 - 4x - 1
Answer:
1) For each value of x, a value of y is increased by 5.
x = 0, y = 5
x = 1, y = 10
x = 2, y = 15
x = 3, y = 20
------------------------------------------------------------------------------------------
2) For each two values of x, a value of y is increased by 10.
x = 0, y = -2
x = 2, y = 8
x = 4, y = 18
x = 6, y = 28
-------------------------------------------------------------------------------------------
3)
x = 0, y = 1
x = 1, y = 
x = 5, y = 3
x = 10, y = 5
-------------------------------------------------------------------------------------------------
4)
x = 0, y = 2
x = 1, y = 17
x = 2, y = 32
x = 5, y = 77
Step-by-step explanation:
This is as easy as replacing x for the actual value show on the table.
1)

When x = 0, y = ?

When x = 1, y = ?

When x = 2, y = ?

When x = 3, y = ?

-------------------------------------------------------------------------------------------------------
2)

When x = 0, y = ?

When x = 2, y = ?

When x = 4, y = ?

When x = 6, y = ?

----------------------------------------------------------------------------------------------------
3)

When x = 0, y = ?


When x = 1, y = ?


When x = 5, y = ?

When x = 10, y = ?

-------------------------------------------------------------------------------------------------
4)

When x = 0, y = ?

When x = 1, y = ?

When x = 2, y = ?

When x = 5, y = ?

Answer:
120
Step-by-step explanation:
Add more detail if it is a different question
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
f(x) = 3 - 2sin(x)
0 = 3 - 2sin(x)
- 3 - 3
-3 = -2sin(x)
-2 -2
1¹/₂ = sin(x)
sin⁻¹(1¹/₂) = sin⁻¹[sin(x)]
sin⁻¹(1¹/₂) = x