First of all you have to find the missing measurements. The actual measurements for the angles in the hexagon are not given, but they give you an expression. You have to solve for x first so that you can plug it in and find the angle measurement. You have to equal the two sides that are given to you like this: 20x+48=33x+9. You solve for x and then plug it into each angle measurement. This should give you 108. Since it is a regular hexagon all of the sides are equal. If you look at the angle at the top of the hexagon you'll see two triangles and the angle. Since it lies on a straight line, it is all equal to 180. You already have the angle measurement of the hexagon and are missing the triangles. So 180-108=72. 72 is the missing part of the angle. You divide this by 2 in order to find each triangle angle measurements. the answer is 36 degrees.
The digit 5 in the number 150,000 represents 50,000 (fifty thousands) while the digit 5 in 100,500 represents 500 (five hundreds).
It is 63-(-16) or 63+16 which is 79. So the difference is 79 degrees Fahrenheit
Answer:
b(b/a)^2
Step-by-step explanation:
Given that the value of the car depreciates such that its value at the end of each year is p % less than its value at the end of the previous year and that car was worth a dollars on December 31, 2010 and was worth b dollars on December 31, 2011, then
b = a - (p% × a) = a(1-p%)
b/a = 1 - p%
p% = 1 - b/a = (a-b)/a
Let the worth of the car on December 31, 2012 be c
then
c = b - (b × p%) = b(1-p%)
Let the worth of the car on December 31, 2013 be d
then
d = c - (c × p%)
d = c(1-p%)
d = b(1-p%)(1-p%)
d = b(1-p%)^2
d = b(1- (a-b)/a)^2
d = b((a-a+b)/a)^2
d = b(b/a)^2 = b^3/a^2
The car's worth on December 31, 2013 = b(b/a)^2 = b^3/a^2
Answer:
b= 8 1/10 i think
Step-by-step explanation:
you might want to test it out tho. I really hope this helps