Solve for b if: 4log base2 2x + 2log base b x = 4
1 answer:
Log base b=logb
4 log₂ 2x+ 2logb x=4
log₂(2x)⁴+logb x²=log₂16
log₂ 16x⁴+ logb x²=log₂ 16
logb x²=log₂ 16 - log₂ 16x⁴
logb x²=log₂ (16/16x⁴)
logb x²= log₂ x⁻⁴
logb x²=log₂ x² / log₂ b
log₂ x² / log₂ b=-log x⁴
log₂ b=log₂ x² /- log₂ x⁴
log₂ b=2 log x / -4 log₂ x
log₂ b=-1/2 ⇔ b=2⁻¹/² =1/√2=(√2)/2≈ 0.707106781....
Answer: b=(√2)/2
To chek
if x=10
log base √2/2= log√2/2
4 log₂ 20 + 2log√2/2 10=4(4.321928095...)+2 (-6.64385619=
= 17.28771238-13.28771238=4
You might be interested in
6,277,765 rounds up to 6,300,00
The answer would be 15. 30*6=180 180/12=15
Answer:
what is this
Step-by-step explanation:
and btw for the free coins
Because you can simplify 40/100 and get 4/10
when you divide 40/100 by ten on the den. and num. you will get 4/10
Answer:
x
Step-by-step explanation:
(x−y + x+y) / 2
2x / 2
x