Using Laplace transform we have:L(x')+7L(x) = 5L(cos(2t))sL(x)-x(0) + 7L(x) = 5s/(s^2+4)(s+7)L(x)- 4 = 5s/(s^2+4)(s+7)L(x) = (5s - 4s^2 -16)/(s^2+4)
=> L(x) = -(4s^2 - 5s +16)/(s^2+4)(s+7)
now the boring part, using partial fractions we separate 1/(s^2+4)(s+7) that is:(7-s)/[53(s^2+4)] + 1/53(s+7). So:
L(x)= (1/53)[(-28s^2+4s^3-4s^2+35s-5s^2+5s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]L(x)= (1/53)[(4s^3 -37s^2 +40s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]
denoting T:= L^(-1)and x= (4/53) T(s^3/(s^2+4)) - (37/53)T(s^2/(s^2+4)) +(40/53) T(s^2+4)-(4/53) T(s^2/s+7) +(5/53)T(s/s+7) - (16/53) T(1/s+7)
So it would be $38 multiplied by 33 which is: $1,254
What she ate is
(13/4)×(5/7)
65/28 pounfs of candy
Answer:
Known:
• a book have front, back and 200 pages
• front= 0.7 mm
• back= 0.7 mm
• each page= 0,14 mm
ask:
calculate the minimum thickness...?
answer:
a. 200 p × 0,14 = 28 mm
b. front + back = 0.7+0.7= 1.4 mm
Thickness= 28+1,4 = 29,4 mm
I hope this helps
if u have question let me know in comments^_^