and you graph it from -4 to the right with close circle
Hope this help
Answer:
StartFraction 12 n over r EndFraction or A
Step-by-step explanation:
Usual limit of sin is sinX/X--->1, when X--->0
sin3x/5x^3-4x=0/0?, sin3x/3x--->1 when x --->0, so sin3x/5x^3-4x= [3x. sin3x / 3x] /(5x^3-4x)=(sin3x / 3x) . (3x/5x^3-4x)
=(sin3x / 3x) . (3/5x^2- 4)
finally lim sin3x/5x^3-4x=lim (sin3x / 3x) .(3/5x^2- 4)=1x(3/-4)= - 3/4
x----->0 x---->0
Answer:
mmmmmmmm
Step-by-step explanation:
the answer ................
Answer:
I think so I'm not too sure