1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sveticcg [70]
3 years ago
13

Will mark brainliest Please help ASAP

Mathematics
1 answer:
olya-2409 [2.1K]3 years ago
7 0
I think the answer is C
You might be interested in
What expressions are equivalent to 5^5 over 5^3
andrezito [222]
25 or 5^2 because when you divide two exponents you subtract the exponent parts
7 0
3 years ago
I need help with this
Volgvan

Answer:

72 pi + 48 pi= 120pi (not sure if I am right tho)

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
How would i solve y=x+z/a-x and solve for x
Alborosie

Answer:

<h3>ya-z/1+y</h3>

Step-by-step explanation:

Making x the subject of the formula;

y=x+z/a-x

Cross multiply

y(a-x) = x+z

ya - yx = x+z

Collect like terms

x+yx = ya - z

x(1+y) = ya - z

x = ya-z/1+y

Hence the value of x is ya-z/1+y

4 0
3 years ago
Animal populations are not capable of unrestricted growth because of limited habitat and food supplies. Under such conditions th
trasher [3.6K]

Answer:

(a) 100 fishes

(b) t = 10: 483 fishes

    t = 20: 999 fishes

    t = 30: 1168 fishes

(c)

P(\infty) = 1200

Step-by-step explanation:

Given

P(t) =\frac{d}{1+ke^-{ct}}

d = 1200\\k = 11\\c=0.2

Solving (a): Fishes at t = 0

This gives:

P(0) =\frac{1200}{1+11*e^-{0.2*0}}

P(0) =\frac{1200}{1+11*e^-{0}}

P(0) =\frac{1200}{1+11*1}

P(0) =\frac{1200}{1+11}

P(0) =\frac{1200}{12}

P(0) = 100

Solving (a): Fishes at t = 10, 20, 30

t = 10

P(10) =\frac{1200}{1+11*e^-{0.2*10}} =\frac{1200}{1+11*e^-{2}}\\\\P(10) =\frac{1200}{1+11*0.135}=\frac{1200}{2.485}\\\\P(10) =483

t = 20

P(20) =\frac{1200}{1+11*e^-{0.2*20}} =\frac{1200}{1+11*e^-{4}}\\\\P(20) =\frac{1200}{1+11*0.0183}=\frac{1200}{1.2013}\\\\P(20) =999

t = 30

P(30) =\frac{1200}{1+11*e^-{0.2*30}} =\frac{1200}{1+11*e^-{6}}\\\\P(30) =\frac{1200}{1+11*0.00247}=\frac{1200}{1.0273}\\\\P(30) =1168

Solving (c): \lim_{t \to \infty} P(t)

In (b) above.

Notice that as t increases from 10 to 20 to 30, the values of e^{-ct} decreases

This implies that:

{t \to \infty} = {e^{-ct} \to 0}

So:

The value of P(t) for large values is:

P(\infty) = \frac{1200}{1 + 11 * 0}

P(\infty) = \frac{1200}{1 + 0}

P(\infty) = \frac{1200}{1}

P(\infty) = 1200

5 0
3 years ago
Cable Strength: A group of engineers developed a new design for a steel cable. They need to estimate the amount of weight the ca
KatRina [158]

Answer:

95% confidence interval for the mean breaking strength of the new steel cable is [763.65 lb , 772.75 lb].

Step-by-step explanation:

We are given that the engineers take a random sample of 45 cables and apply weights to each of them until they break. The mean breaking weight for the 45 cables is 768.2 lb. The standard deviation of the breaking weight for the sample is 15.1 lb.

Since, in the question it is not specified that how much confidence interval has be constructed; so we assume to be constructing of 95% confidence interval.

Firstly, the Pivotal quantity for 95% confidence interval for the population mean is given by;

                            P.Q. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean breaking weight = 768.2 lb

            s = sample standard deviation = 15.1 lb

            n = sample of cables = 45

            \mu = population mean breaking strength

Here for constructing 95% confidence interval we have used One-sample t test statistics as we don't know about population standard deviation.

<u>So, 95% confidence interval for the population mean, </u>\mu<u> is ;</u>

P(-2.02 < t_4_4 < 2.02) = 0.95  {As the critical value of t at 44 degree

                                           of freedom are -2.02 & 2.02 with P = 2.5%}  

P(-2.02 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 2.02) = 0.95

P( -2.02 \times {\frac{s}{\sqrt{n} } } < {\bar X-\mu} < 2.02 \times {\frac{s}{\sqrt{n} } } ) = 0.95

P( \bar X-2.02 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+2.02 \times {\frac{s}{\sqrt{n} } } ) = 0.95

<u>95% confidence interval for</u> \mu = [ \bar X-2.02 \times {\frac{s}{\sqrt{n} } } , \bar X+2.02 \times {\frac{s}{\sqrt{n} } } ]

                                     = [ 768.2-2.02 \times {\frac{15.1}{\sqrt{45} } } , 768.2+2.02 \times {\frac{15.1}{\sqrt{45} } } ]

                                     = [763.65 lb , 772.75 lb]

Therefore, 95% confidence interval for the mean breaking strength of the new steel cable is [763.65 lb , 772.75 lb].

3 0
4 years ago
Other questions:
  • A record label surveyed 150 random visitors to its website to discover whether they prefer metal, rock, hip-hop, or jazz. The su
    10·2 answers
  • Need help with 8 &amp; 10 please .
    8·1 answer
  • An iron bench was marked up 100% from an original cost of $95. If Hannah bought the iron bench and paid 10% sales tax, how much
    6·1 answer
  • suzi starts her hike at a elevation if -225 below sea level. When she reaches the end of the hike, she is still nelow sea level
    14·1 answer
  • HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    5·1 answer
  • A scientist has 2/3 of liter of solution. He uses 1/2 of the solution of the solution for an experiment.
    14·2 answers
  • -18x − 2x − 20x − -13x − -9x = 18
    5·1 answer
  • Write an example of an equation for an exponential growth function
    15·1 answer
  • So thirds a number plus 4 is 7
    7·1 answer
  • What is six and eighty-seven thousandths
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!