1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
3 years ago
9

HELP WITH WORD PROBLEM - The quality control engineer of top notch tool company finds flaws in 8 of 60 wrenches examined. Predic

t the number of flawed wrenches in a batch of 2400
Mathematics
1 answer:
USPshnik [31]3 years ago
6 0

Answer:

The expected ratio: 8/60 = x/2400

=> The number of flawed wrenches in a batch of 2400:

x = 2400*8/60 = 320

You might be interested in
Round 6.09933418366 to 4 decimal places
telo118 [61]

Answer:

6.113 i believe to be so

7 0
3 years ago
Bucket A has 5 1/2 gallons of water, but is draining at a rate of 3/4 gallons per hour. Bucket B has 2 1/4 gallons of water, but
Ivenika [448]

Answer:

9/0

Step-by-step explanation:

6 0
3 years ago
As an estimation we are told 5 miles is 8 km.<br>Convert 52 km to miles.​
11111nata11111 [884]

Answer:

83.2

Step-by-step explanation:

Given, 5 miles is 8km.  

So, 1 mile will be (8/5) km.  

Now, 52 miles will be (8/5) x 52= 83.2

sorry if I'm wrong plz don't report me :(

(hope this helps can i plz have brainlist :D hehe)

4 0
3 years ago
Read 2 more answers
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
Write an equation in slope-intercept form for the graph shown.
worty [1.4K]

Answer:

The equation of the graph in slope-intercept form is y = 3x + 7. 2. slope-intercept form is y = x + 2.

7 0
2 years ago
Read 2 more answers
Other questions:
  • I really need help on this!
    14·1 answer
  • The soccer field at Mario's school has a area of 6,000 square miles.How can Mario show the area as a whole number multiplied by
    14·1 answer
  • System of equations help?
    14·1 answer
  • Solve each question. show work. -5-b=8
    15·2 answers
  • Please help! 20 Points!
    14·2 answers
  • What is the vertex of the graph of this equation y=2x^2+8x-24
    14·1 answer
  • There were 2430 Major League Baseball games played in 2009, and the home team won the game in 53% of the games. If we consider t
    13·1 answer
  • 8+8b+2b = 2b+16 solve
    9·1 answer
  • There are 170000 cows. 10 percent of them die each year. How many cows will be left after 20 years have passed?
    11·2 answers
  • The function C(x) = 500(1-0.011)* models the amount of antibiotic, in milligrams, in the body x minutes after
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!