1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GarryVolchara [31]
3 years ago
12

Evaluate 4-2f when f=1

Mathematics
2 answers:
iren2701 [21]3 years ago
7 0
The answer is 2 ....
.. 
Sladkaya [172]3 years ago
6 0
First substitute f for 1 a number and a variable together means multiplication. 4-2*1
Multiplication is first so (2*1=2) which brings us to 4-2.
Subtract 4-2=2
Answer: 2
You might be interested in
Suppose you are choosing between checking account A, which charges a $7.50 monthly fee, $1 per check, and $2 per ATM visit; and
Kisachek [45]

I'd go with Checking account B because its cheaper .


8 0
3 years ago
Find the direction cosines and direction angles of the vector. (Give the direction angles correct to the nearest degree.) 5, 1,
Dahasolnce [82]

Answer:

The direction cosines are:

\frac{5}{\sqrt{42} }, \frac{1}{\sqrt{42} }  and  \frac{4}{\sqrt{42} }  with respect to the x, y and z axes respectively.

The direction angles are:

40°,  81° and  52° with respect to the x, y and z axes respectively.

Step-by-step explanation:

For a given vector a = ai + aj + ak, its direction cosines are the cosines of the angles which it makes with the x, y and z axes.

If a makes angles α, β, and γ (which are the direction angles) with the x, y and z axes respectively, then its direction cosines are: cos α, cos β and cos γ in the x, y and z axes respectively.

Where;

cos α = \frac{a . i}{|a| . |i|}               ---------------------(i)

cos β = \frac{a.j}{|a||j|}               ---------------------(ii)

cos γ = \frac{a.k}{|a|.|k|}             ----------------------(iii)

<em>And from these we can get the direction angles as follows;</em>

α =  cos⁻¹ ( \frac{a . i}{|a| . |i|} )

β = cos⁻¹ ( \frac{a.j}{|a||j|} )

γ = cos⁻¹ ( \frac{a.k}{|a|.|k|} )

Now to the question:

Let the given vector be

a = 5i + j + 4k

a . i =  (5i + j + 4k) . (i)

a . i = 5         [a.i <em>is just the x component of the vector</em>]

a . j = 1            [<em>the y component of the vector</em>]

a . k = 4          [<em>the z component of the vector</em>]

<em>Also</em>

|a|. |i| = |a|. |j| = |a|. |k| = |a|           [since |i| = |j| = |k| = 1]

|a| = \sqrt{5^2 + 1^2 + 4^2}

|a| = \sqrt{25 + 1 + 16}

|a| = \sqrt{42}

Now substitute these values into equations (i) - (iii) to get the direction cosines. i.e

cos α = \frac{5}{\sqrt{42} }

cos β =  \frac{1}{\sqrt{42} }              

cos γ =  \frac{4}{\sqrt{42} }

From the value, now find the direction angles as follows;

α =  cos⁻¹ ( \frac{a . i}{|a| . |i|} )

α =  cos⁻¹ ( \frac{5}{\sqrt{42} } )

α =  cos⁻¹ (\frac{5}{6.481} )

α =  cos⁻¹ (0.7715)

α = 39.51

α = 40°

β = cos⁻¹ ( \frac{a.j}{|a||j|} )

β = cos⁻¹ ( \frac{1}{\sqrt{42} } )

β = cos⁻¹ ( \frac{1}{6.481 } )

β = cos⁻¹ ( 0.1543 )

β = 81.12

β = 81°

γ = cos⁻¹ ( \frac{a.k}{|a|.|k|} )

γ = cos⁻¹ (\frac{4}{\sqrt{42} })

γ = cos⁻¹ (\frac{4}{6.481})

γ = cos⁻¹ (0.6172)

γ = 51.89

γ = 52°

<u>Conclusion:</u>

The direction cosines are:

\frac{5}{\sqrt{42} }, \frac{1}{\sqrt{42} }  and  \frac{4}{\sqrt{42} }  with respect to the x, y and z axes respectively.

The direction angles are:

40°,  81° and  52° with respect to the x, y and z axes respectively.

3 0
3 years ago
¿Cómo las razones de seno y cos<br>eno son semejantes?​
Sauron [17]
Las razones de los lados de un triángulo rectángulo se llaman razones trigonométricas.

Espero te ayude :)
6 0
3 years ago
Solve the inequality<br>w/2&lt;-42​
exis [7]

Answer:

w<-84

Step-by-step explanation:

solved the equation

4 0
3 years ago
Find all solutions of the equation: 2cos^2x-cosx=1
Art [367]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3166243

——————————

Solve the trigonometric equation:

     \mathsf{2\,cos^2\,x-cos\,x=1}\\\\ \mathsf{2\,cos^2\,x-cos\,x-1=0}


Make a substitution:

     \mathsf{cos\,x=t\qquad (-1\le t\le 1)}

and the equation becomes

     \mathsf{2t^2-t-1=0}


Rewrite conveniently  – t  as  + t – 2t,  and then factor the left-hand side by grouping:

      \mathsf{2t^2+t-2t-1=0}\\\\ \mathsf{t\cdot (2t+1)-1\cdot (2t+1)=0}


Factor out  2t + 1:

     \mathsf{(2t+1)\cdot (t-1)=0}\\\\ \begin{array}{rcl} \mathsf{2t+1=0}&~\textsf{ or }~&\mathsf{t-1=0}\\\\ \mathsf{2t=1}&~\textsf{ or }~&\mathsf{t=1}\\\\ \mathsf{t=\dfrac{\,1\,}{2}}&~\textsf{ or }~&\mathsf{t=1} \end{array}


Substitute back for  t = cos x:

     \begin{array}{rcl}\mathsf{cos\,x=\dfrac{\,1\,}{2}}&~\textsf{ or }~&\mathsf{cos\,x=1}\\\\ \mathsf{cos\,x=cos\,60^\circ}&~\textsf{ or }~&\mathsf{cos\,x=cos\,0} \end{array}


Therefore,

     \begin{array}{rcl} \mathsf{x=\pm\,60^\circ+k\cdot 360^\circ}&~\textsf{ or }~&\mathsf{cos\,x=0+k\cdot 360^\circ} \end{array}

where  k  is an integer.


Solution set:   

\mathsf{S=\left\{x\in\mathbb{R}:~~x=-\,60^\circ+k\cdot 360^\circ~~or~~x=60^\circ+k\cdot 360^\circ~~or~~x=k\cdot 360^\circ,~~k\in\mathbb{Z}\right\}}


I hope this helps. =)

3 0
3 years ago
Other questions:
  • Show how to use an area model to multiply 71×48
    13·2 answers
  • What is a simple way to tell that 1 1/2<br> is not the slope of this graph?
    9·2 answers
  • Which inequality is true x=20
    13·1 answer
  • Asking this for a third time now
    12·1 answer
  • PLEASE VIEW WHAT'S ATTACHED
    11·1 answer
  • Complete the synthetic division to find the quotient of 3x^3-25x^2+12x-32 and x-8
    9·1 answer
  • On your wedding day you leave for the church 30 minutes before the ceremony is scheduled to start. The church is only 10 miles a
    5·1 answer
  • You deposit $1500 in an account that pays 5% interest compounded yearly. Find
    14·2 answers
  • Determine the unit rate of the following. 9 yards of material for 5 dresses The unit rate isyd / dress (Type a whole number or a
    13·1 answer
  • What is 180.2 rounded to the nearest hundred
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!