Answer:
Number of jars can be filled from 15kg of the salt = 468 or 469 jars (Approx.)
Step-by-step explanation:
Given:
Amount of salt containing in jar = 32 gram
Total amount of salt in jar = 15 kg
Find:
Number of jars can be filled from 15kg of the salt
Computation:
Total amount of salt in jar = 15 kg
Total amount of salt in jar (in grams) = 15 x 1000 g
Total amount of salt in jar (in grams) = 15,000 g
Number of jars can be filled from 15kg of the salt = Total amount of salt in jar (in grams) / Amount of salt containing in jar
Number of jars can be filled from 15kg of the salt = 15,000 / 32
Number of jars can be filled from 15kg of the salt = 468.75
Number of jars can be filled from 15kg of the salt = 468 or 469 jars (Approx.)
The given distance of 5.20 would be A.
Replace A with 5.20 to solve for T.
T = 5.20^3/2
T = 11.9 years.
(0,-1)(1,0)(2,3)(3,8)(4,15)
Answer:
x = -3
General Formulas and Concepts:
<u>Pre-Algebra</u>
- Order of Operations: BPEMDAS
- Equality Properties
Step-by-step explanation:
<u>Step 1: Define equation</u>
5(x + 4) = -2(-4 - x) + 3
<u>Step 2: Solve for </u><em><u>x</u></em>
- Distribute: 5x + 20 = 8 + 2x + 3
- Combine like terms: 5x + 20 = 2x + 11
- Subtract 2x on both sides: 3x + 20 = 11
- Subtract 20 on both sides: 3x = -9
- Divide 3 on both sides: x = -3
<u>Step 3: Check</u>
<em>Plug in x to verify it's a solution.</em>
- Substitute: 5(-3 + 4) = -2(-4 - -3) + 3
- Simplify: 5(-3 + 4) = -2(-4 + 3) + 3
- Add: 5(1) = -2(-1) + 3
- Multiply: 5 = 2 + 3
- Add: 5 = 5
Here we see that 5 does indeed equal 5. ∴ x = -3 is a solution of the equation.
And we have our final answer!