This question is incomplete, here is the complete question
What is the recursive formula for this geometric sequence 2, -10, 50, -250, .... ?
The recursive formula for this geometric sequence is:
= 2;
= (-5) • 
Step-by-step explanation:
To find the recursive formula for a geometric sequence:
- Determine if the sequence is geometric (Do you multiply, or divide, the same amount from one term to the next?)
- Find the common ratio. (The number you multiply or divide.)
- Create a recursive formula by stating the first term, and then stating the formula to be the common ratio times the previous term.
The recursive formula is:
= first term;
= r •
, where
is the first term in the sequence
is the term before the nth term - r is the common ratio
∵ The geometric sequence is 2 , -10 , 50 , -250
∴
= 2
- To find r divide the 2nd term by the first term
∵ 
∴ 
- Substitute the values of
and r in the formula above
∴
= 2;
= (-5) • 
The recursive formula for this geometric sequence is:
= 2;
= (-5) • 
Learn more:
You can learn more about the geometric sequence in brainly.com/question/1522572
#LearnwithBrainly
Answer:
Option a.
Step-by-step explanation:
In the given triangle angle A is a right angle so triangle ABC is a right angled triangle.
Opposite side of right angle is hypotenuse. So, CB is hypotenuse.
From figure it is clear that CA is shorter that segment BA.
All angles are congruent to itself. So angle C is congruent to itself.
We know that, if an altitude is drawn from the right angle vertex in a right angle triangle it divide the triangle in two right angle triangles, then given triangle is similar to both new triangles.
So, triangle ABC is similar to triangle DBA if segment AD is an altitude of triangle ABC.
Therefore, the correct option is a.
Answer:
-11 and -1
Step-by-step explanation:
These are the two numbers that multiply to 11 and add to -12.
The first one is 2/10.The second one is 2/4.The third one is 2/16,and the forth one is 3/6.