Answer:
a·a-b·b
Step-by-step explanation:
Answer:
Step-by-step explanation:
Hello!
For me, the first step to any statistics exercise is to determine what is the variable of interest and it's distribution.
In this example the variable is:
X: height of a college student. (cm)
There is no information about the variable distribution. To estimate the population mean you need a variable with at least a normal distribution since the mean is a parameter of it.
The option you have is to apply the Central Limit Theorem.
The central limit theorem states that if you have a population with probability function f(X;μ,δ²) from which a random sample of size n is selected. Then the distribution of the sample mean tends to the normal distribution with mean μ and variance δ²/n when the sample size tends to infinity.
As a rule, a sample of size greater than or equal to 30 is considered sufficient to apply the theorem and use the approximation.
The sample size in this exercise is n=50 so we can apply the theorem and approximate the distribution of the sample mean to normal:
X[bar]~~N(μ;σ2/n)
Thanks to this approximation you can use an approximation of the standard normal to calculate the confidence interval:
98% CI
1 - α: 0.98
⇒α: 0.02
α/2: 0.01

X[bar] ± 
174.5 ± 
[172.22; 176.78]
With a confidence level of 98%, you'd expect that the true average height of college students will be contained in the interval [172.22; 176.78].
I hope it helps!
Answer:
12g8h10
Multiply each variable quantity by 2 and combine.
1) (-7,2)
y=2, -x+4=11, -x=11-4=7, x=-7
2) (-3,4)
-x+2y=11
y=4, -x+8=11, -x=3, x=-3
3) (1,6)
-x+2y=11
y=6, -x+12=11,-x=-1, x=1
Answer:
RED
BLUE
BLUE
RED
BLUE
<h2>MARK ME BRAINLIEST PLSSS</h2>