5.25
- 1.75
--------
=3.50
the k bakery used 3.50 more cups of flour than the local bakery.
So the first thing you want to do is solve what's in the parentheses (4^2-3) before you subtract, you get rid of the exponent by doing 4 times 4 (also known as 4^2) to get 16. you then subtract 3 from 16 getting 13. you then multiply7 by 13 to get 91, where you add the 8 to get 99 which would be the final answer
Answer:
In inequality notation:
Domain: -1 ≤ x ≤ 3
Range: -4 ≤ x ≤ 0
In set-builder notation:
Domain: {x | -1 ≤ x ≤ 3 }
Range: {y | -4 ≤ x ≤ 0 }
In interval notation:
Domain: [-1, 3]
Range: [-4, 0]
Step-by-step explanation:
The domain is all the x-values of a relation.
The range is all the y-values of a relation.
In this example, we have an equation of a circle.
To find the domain of a relation, think about all the x-values the relation can be. In this example, the x-values of the relation start at the -1 line and end at the 3 line. The same can be said for the range, for the y-values of the relation start at the -4 line and end at the 0 line.
But what should our notation be? There are three ways to notate domain and range.
Inequality notation is the first notation you learn when dealing with problems like these. You would use an inequality to describe the values of x and y.
In inequality notation:
Domain: -1 ≤ x ≤ 3
Range: -4 ≤ x ≤ 0
Set-builder notation is VERY similar to inequality notation except for the fact that it has brackets and the variable in question.
In set-builder notation:
Domain: {x | -1 ≤ x ≤ 3 }
Range: {y | -4 ≤ x ≤ 0 }
Interval notation is another way of identifying domain and range. It is the idea of using the number lines of the inequalities of the domain and range, just in algebriac form. Note that [ and ] represent ≤ and ≥, while ( and ) represent < and >.
In interval notation:
Domain: [-1, 3]
Range: [-4, 0]
Answer:
Step-by-step explanation:
24% of 315
= 24/100 × 315
= 0.24. × 315
= 75.6