At the end of three days,
% of the original amount of liquid remains in Kyle's container .
<u>Step-by-step explanation:</u>
Here we have , Every day 10% of the liquid present in the morning in Kyle's open container will evaporate. At the end of three days, We need to find what percent of the original amount of liquid remains in Kyle's container . Let's find out:
Let's suppose initially we have 100% of liquid present so ,
<u>At day 1:</u>
10% of the liquid present(100%) in the morning in Kyle's open container will evaporate , So left is :
⇒ 
⇒ 
⇒
%
<u>At day 2:</u>
10% of the liquid present(90%) in the morning in Kyle's open container will evaporate , So left is :
⇒ 
⇒ 
⇒
%
<u>At day 3:</u>
10% of the liquid present(81%) in the morning in Kyle's open container will evaporate , So left is :
⇒ 
⇒ 
⇒
%
Therefore , At the end of three days,
% of the original amount of liquid remains in Kyle's container .
The answer is C.1/2 because there is only possible numbers are 3,5,6.
The answer is B because thats the correct way to use a proper adjective
Don't touch the center. It is already even.
Start anywhere by connecting a dotted line from one vertex to the next. To keep things so we know what we are talking about, go clockwise. Now you have 2 points that are Eulerized that were not before.
Skip and edge and do the same thing to the next two vertices. Those two become eulerized. Skip an edge and do the last 2.
Let's try to describe this better. Start at any vertex and number them 1 to 6 clockwise.
Join 1 to 2
Join 3 to 4
Join 5 to 6
I think 3 is the minimum.
3 <<<< answer