1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harman [31]
3 years ago
12

2b^2+4b–2=0 what is the answer?

Mathematics
1 answer:
s2008m [1.1K]3 years ago
5 0
2b^2+4b-2=0\\
2(b^2+2b-1)=0\\
2(b^2+2b+1-2)=0\\
2((b+1)^2-2)=0\\
2(b+1)^2-4=0\\\
2(b+1)^2=4\\\
(b+1)^2=2\\
b+1=-\sqrt2 \vee b+1=\sqrt2\\
b=-1-\sqrt2 \vee b=-1+\sqrt2


You might be interested in
Simplify the expression. Write the answer using scientific notation.
bonufazy [111]

Answer:

  C.  2.5×10^-27

Step-by-step explanation:

(2×10^-13)^-2 = 2^-2 × 10^(13×(-2)) = 1/4 × 10^-26

= 0.25 × 10^-26 = 2.5 × 10^-27

___

Your scientific or graphing calculator can compute and display this for you.

4 0
3 years ago
You roll a fair six-sided die. The die shows an odd number or a number greater than two.
melomori [17]

Answer:

4/6

Step-by-step explanation:

5 0
3 years ago
Please help, see attachment for equation!
Alekssandra [29.7K]

Answer:

The answer to your question is the last option

Step-by-step explanation:

Quadratic equation

                                2 = - x + x² - 4

Order the equation from the highest power to the lowest power. Do not consider 2 because it is not consider in the options given.

                               x² - x - 4  = 0

Identify a, b and c

                              (1) x² -(1) x - 4 = 0

    a = 1    b = -1    c = - 6      

Substitution              

                              \frac{-(-1) +- \sqrt{(-1)^{2} - 4(1)((-4)}}{2(1)}

3 0
3 years ago
Find the differential coefficient of <br><img src="https://tex.z-dn.net/?f=e%5E%7B2x%7D%281%2BLnx%29" id="TexFormula1" title="e^
Gemiola [76]

Answer:

\rm \displaystyle y' =   2 {e}^{2x}   +    \frac{1}{x}  {e}^{2x}  + 2 \ln(x) {e}^{2x}

Step-by-step explanation:

we would like to figure out the differential coefficient of e^{2x}(1+\ln(x))

remember that,

the differential coefficient of a function y is what is now called its derivative y', therefore let,

\displaystyle y =  {e}^{2x}  \cdot (1 +   \ln(x) )

to do so distribute:

\displaystyle y =  {e}^{2x}  +   \ln(x)  \cdot  {e}^{2x}

take derivative in both sides which yields:

\displaystyle y' =  \frac{d}{dx} ( {e}^{2x}  +   \ln(x)  \cdot  {e}^{2x} )

by sum derivation rule we acquire:

\rm \displaystyle y' =  \frac{d}{dx}  {e}^{2x}  +  \frac{d}{dx}   \ln(x)  \cdot  {e}^{2x}

Part-A: differentiating $e^{2x}$

\displaystyle \frac{d}{dx}  {e}^{2x}

the rule of composite function derivation is given by:

\rm\displaystyle  \frac{d}{dx} f(g(x)) =  \frac{d}{dg} f(g(x)) \times  \frac{d}{dx} g(x)

so let g(x) [2x] be u and transform it:

\displaystyle \frac{d}{du}  {e}^{u}  \cdot \frac{d}{dx} 2x

differentiate:

\displaystyle   {e}^{u}  \cdot 2

substitute back:

\displaystyle    \boxed{2{e}^{2x}  }

Part-B: differentiating ln(x)•e^2x

Product rule of differentiating is given by:

\displaystyle  \frac{d}{dx} f(x) \cdot g(x) = f'(x)g(x) + f(x)g'(x)

let

  • f(x) \implies   \ln(x)
  • g(x) \implies    {e}^{2x}

substitute

\rm\displaystyle  \frac{d}{dx}  \ln(x)  \cdot  {e}^{2x}  =  \frac{d}{dx}( \ln(x) ) {e}^{2x}  +  \ln(x) \frac{d}{dx}  {e}^{2x}

differentiate:

\rm\displaystyle  \frac{d}{dx}  \ln(x)  \cdot  {e}^{2x}  =   \boxed{\frac{1}{x} {e}^{2x}  +  2\ln(x)  {e}^{2x} }

Final part:

substitute what we got:

\rm \displaystyle y' =   \boxed{2 {e}^{2x}   +    \frac{1}{x}  {e}^{2x}  + 2 \ln(x) {e}^{2x} }

and we're done!

6 0
3 years ago
Plz answer these i dont know them
Black_prince [1.1K]

Answer:

117, 55, 54, 77, 130, 7h + 5x, 14

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • Algebra.
    15·1 answer
  • Help me pleaseeee pleaseee
    11·1 answer
  • Find the value of x and check the solution.<br>5 + 4x = -11​
    11·2 answers
  • HELLPPP DUE TODAY AT 4
    6·1 answer
  • Please help ill give brainliest
    8·2 answers
  • What is the length of DF? Round to the nearest hundredth.
    15·1 answer
  • What is 7x^2-8x-9=-3x rounded to the nearest hundredth
    5·1 answer
  • 1,267 ÷ 5 <br><img src="https://tex.z-dn.net/?f=1267%20%5Cdiv%205" id="TexFormula1" title="1267 \div 5" alt="1267 \div 5" align=
    6·2 answers
  • A dining room is 21 ft long. On a blueprint, the dining room is 3.5 ft long and 2.5 ft wide. The actual width of the dining room
    15·1 answer
  • What is the meaning of the word lucrative as it is used in the following sentence?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!