Remark
The key step is just to subtract 5 from both sides. The pointed of the inequality still points away from the variable and towards the number. As long as that remains true, the correct answer can be found.
Solution
2.7 ≤ b + 5 Subtract 5 from both sides.
2.7 - 5 ≤ b
- 2.3 ≤ b Write with the variable on the left.
b ≥ - 2.3 <<<< answer
Answer:
hhhhhhhhhhhhhh
Step-by-step explanation:
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Answer:
Step-by-step explanation:
The genral form of a complex number in rectangular plane is expressed as z = x+iy
In polar coordinate, z =rcos ∅+irsin∅ where;
r is the modulus = √x²+y²
∅ is teh argument = arctan y/x
Given thr complex number z = 6+6√(3)i
r = √6²+(6√3)²
r = √36+108
r = √144
r = 12
∅ = arctan 6√3/6
∅ = arctan √3
∅ = 60°
In polar form, z = 12(cos60°+isin60°)
z = 12(cosπ/3+isinπ/3)
To get the fourth root of the equation, we will use the de moivres theorem; zⁿ = rⁿ(cosn∅+isinn∅)
z^1/4 = 12^1/4(cosπ/12+isinπ/12)
When n = 1;
z1 = 12^1/4(cosπ/3+isinn/3)
z1 = 12^1/4cis(π/3)
when n = 2;
z2 = 12^1/4(cos2π/3+isin2π/3)
z2 = 12^1/4cis(2π/3)
when n = 3;
z2 = 12^1/4(cosπ+isinπ)
z2 = 12^1/4cis(π)
when n = 4;
z2 = 12^1/4(cos4π/3+isin4π/3)
z2 = 12^1/4cis(4π/3)
Answer:
B
Step-by-step explanation: