1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ghella [55]
4 years ago
10

as a salesperson, jonathan is paid $50 per week of the total amount he sells. this week, he wants to earn at least $100. write a

n inequality with integer coefficients for the total sales needed to earn at least $100 and describe with a solution represents
Mathematics
1 answer:
erastova [34]4 years ago
7 0

Answer: 1/5

Step-by-step explanation:50%50=1

100%50=0.5

You might be interested in
9.
musickatia [10]

Step-by-step explanation:

4x+3x=140

7x=140

x=140/7

x=20

4x=80

3x=60

6 0
3 years ago
Red lights flash every 6 seconds. Blue lights flash every 8 seconds. The store owner turns on the lights. After how many seconds
Morgarella [4.7K]
In 24 seconds they will flash at the same time for the first time
8 0
3 years ago
On an alien planet with no atmosphere, acceleration due to gravity is given by g = 12m/s^2. A cannonball is launched from the or
almond37 [142]

Answer:

a) \vec r (t) = \left[(90\cdot \cos \theta)\cdot t \right]\cdot i + \left[(90\cdot \sin \theta)\cdot t -6\cdot t^{2} \right]\cdot j, b) \theta = \frac{\pi}{4}, c) y_{max} = 84.375\,m, t = 3.75\,s.

Step-by-step explanation:

a) The function in terms of time and the inital angle measured from the horizontal is:

\vec r (t) = [(v_{o}\cdot \cos \theta)\cdot t]\cdot i + \left[(v_{o}\cdot \sin \theta)\cdot t -\frac{1}{2}\cdot g \cdot t^{2} \right]\cdot j

The particular expression for the cannonball is:

\vec r (t) = \left[(90\cdot \cos \theta)\cdot t \right]\cdot i + \left[(90\cdot \sin \theta)\cdot t -6\cdot t^{2} \right]\cdot j

b) The components of the position of the cannonball before hitting the ground is:

x = (90\cdot \cos \theta)\cdot t

0 = 90\cdot \sin \theta - 6\cdot t

After a quick substitution and some algebraic and trigonometric handling, the following expression is found:

0 = 90\cdot \sin \theta - 6\cdot \left(\frac{x}{90\cdot \cos \theta}  \right)

0 = 8100\cdot \sin \theta \cdot \cos \theta - 6\cdot x

0 = 4050\cdot \sin 2\theta - 6\cdot x

6\cdot x = 4050\cdot \sin 2\theta

x = 675\cdot \sin 2\theta

The angle for a maximum horizontal distance is determined by deriving the function, equalizing the resulting formula to zero and finding the angle:

\frac{dx}{d\theta} = 1350\cdot \cos 2\theta

1350\cdot \cos 2\theta = 0

\cos 2\theta = 0

2\theta = \frac{\pi}{2}

\theta = \frac{\pi}{4}

Now, it is required to demonstrate that critical point leads to a maximum. The second derivative is:

\frac{d^{2}x}{d\theta^{2}} = -2700\cdot \sin 2\theta

\frac{d^{2}x}{d\theta^{2}} = -2700

Which demonstrates the existence of the maximum associated with the critical point found before.

c) The equation for the vertical component of position is:

y = 45\cdot t - 6\cdot t^{2}

The maximum height can be found by deriving the previous expression, which is equalized to zero and critical values are found afterwards:

\frac{dy}{dt} = 45 - 12\cdot t

45-12\cdot t = 0

t = \frac{45}{12}

t = 3.75\,s

Now, the second derivative is used to check if such solution leads to a maximum:

\frac{d^{2}y}{dt^{2}} = -12

Which demonstrates the assumption.

The maximum height reached by the cannonball is:

y_{max} = 45\cdot (3.75\,s)-6\cdot (3.75\,s)^{2}

y_{max} = 84.375\,m

7 0
3 years ago
5 Gretchen borrowed $50 from her parents for 3 months. They charged her 14% interest. How much does she need to pay her parents
sergij07 [2.7K]

Step-by-step explanation:

simple interest <em>=</em><em> </em><em>p</em><em>r</em><em>i</em><em>n</em><em>c</em><em>i</em><em>p</em><em>a</em><em>l</em><em>×</em><em>r</em><em>a</em><em>t</em><em>e</em><em>×</em><em>t</em><em>i</em><em>m</em><em>e</em>

<em>S</em><em>.</em><em>I</em><em> </em><em>=</em><em> </em><em>$</em><em>5</em><em>0</em><em>×</em><em>(</em><em>1</em><em>4</em><em>÷</em><em>1</em><em>0</em><em>0</em><em>)</em><em>×</em><em>3</em>

<em>S</em><em>.</em><em>I</em><em>=</em><em>$</em><em>5</em><em>0</em><em>×</em><em>0</em><em>.</em><em>1</em><em>4</em><em>×</em><em>3</em>

<em>S</em><em>.</em><em>I</em><em>=</em><em>$</em><em>2</em><em>1</em>

<em>A</em><em>m</em><em>o</em><em>u</em><em>n</em><em>t</em><em>=</em><em> </em><em>p</em><em>r</em><em>i</em><em>n</em><em>c</em><em>i</em><em>p</em><em>a</em><em>l</em><em> </em><em>+</em><em> </em><em>s</em><em>i</em><em>m</em><em>p</em><em>l</em><em>e</em><em> </em><em>i</em><em>n</em><em>t</em><em>e</em><em>r</em><em>e</em><em>s</em><em>t</em>

<em>A</em><em>m</em><em>o</em><em>u</em><em>n</em><em>t</em><em> </em><em>=</em><em> </em><em>$</em><em>5</em><em>0</em><em>+</em><em>$</em><em>2</em><em>1</em>

<em>A</em><em>m</em><em>o</em><em>u</em><em>n</em><em>t</em><em> </em><em>=</em><em> </em><em>$</em><em>7</em><em>1</em>

6 0
3 years ago
What is y=0.5 (x-6)^2+15 solved for x?
Savatey [412]
y=0.5(x-6)^2+15\\&#10;0.5(x-6)^2=y-15\\&#10;(x-6)^2=2y-30\\&#10;x-6=-\sqrt{2y-30} \vee x-6=\sqrt{2y-30}\\&#10;x=6-\sqrt{2y-30} \vee x=6+\sqrt{2y-30}&#10;
7 0
3 years ago
Other questions:
  • An angle measures 125.6° less than the measure of its supplementary angle. What is the measure of each angle?
    5·2 answers
  • Geometry lesson 11.2 Finding sequence of similarity transformations
    12·1 answer
  • Help
    15·2 answers
  • Solve for x in the diagram below (picture included)
    10·1 answer
  • For which values of P and Q result in an equation with no solutions -68+P=Qx+34
    6·2 answers
  • What is 22,267,230 in word form
    12·2 answers
  • #1 determine the slope of :2x+4y=-16 ?<br> answer
    7·1 answer
  • A student scores 88,73,81,75, and 78 on the first five science tests of the year. What is the minimum score the student needs to
    13·2 answers
  • Can't believe that you got me in a suit and tie I had to take a pull so I wouldn't cry
    9·1 answer
  • 210 cartons is __% of 60 cartons
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!