Answer:

Step-by-step explanation:
The surface area of the square prism is obtained by using the following formula:
![A_{s} (t) = 4\cdot l(t)\cdot h(t) + 2\cdot [l(t)]^{2}](https://tex.z-dn.net/?f=A_%7Bs%7D%20%28t%29%20%3D%204%5Ccdot%20l%28t%29%5Ccdot%20h%28t%29%20%2B%202%5Ccdot%20%5Bl%28t%29%5D%5E%7B2%7D)
The rate of change of the surface area can be found by deriving the function with respect to time:
![\frac{dA_{s}}{dt} = 4\cdot [h(t)\cdot \frac{dl}{dt} + l(t)\cdot \frac{dh}{dt}] + 2\cdot l(t)\cdot \frac{dl}{dt}](https://tex.z-dn.net/?f=%5Cfrac%7BdA_%7Bs%7D%7D%7Bdt%7D%20%3D%204%5Ccdot%20%5Bh%28t%29%5Ccdot%20%5Cfrac%7Bdl%7D%7Bdt%7D%20%2B%20l%28t%29%5Ccdot%20%5Cfrac%7Bdh%7D%7Bdt%7D%5D%20%2B%202%5Ccdot%20l%28t%29%5Ccdot%20%5Cfrac%7Bdl%7D%7Bdt%7D)
Known variables are summarized below:




The rate of change is:
![\frac{dA_{s}}{dt} = 4\cdot [(9\,km)\cdot (-7\,\frac{km}{min} )+(4\,km)\cdot (10\,\frac{km}{min} )] + 2\cdot (4\,km)\cdot (-7\,\frac{km}{min} )](https://tex.z-dn.net/?f=%5Cfrac%7BdA_%7Bs%7D%7D%7Bdt%7D%20%3D%204%5Ccdot%20%5B%289%5C%2Ckm%29%5Ccdot%20%28-7%5C%2C%5Cfrac%7Bkm%7D%7Bmin%7D%20%29%2B%284%5C%2Ckm%29%5Ccdot%20%2810%5C%2C%5Cfrac%7Bkm%7D%7Bmin%7D%20%29%5D%20%2B%202%5Ccdot%20%284%5C%2Ckm%29%5Ccdot%20%28-7%5C%2C%5Cfrac%7Bkm%7D%7Bmin%7D%20%29)

Answer:
7
Step-by-step explanation:
that is my awnser but have someone else double check it just to be shure
Answer: OPTION C.
Step-by-step explanation:
Given a function f(x), the range of the inverse of f(x) will be the domain of the function f(x) and the range of the domain of f(x) will be the range of the inverse function.
For example, if the point (2,1) belongs to f(x), then the point (1,2) belongs to the inverse of f(x).
Observe that in the graph of the function f(x) the point (-3,1) belongs to the function, then the point (1,-3) must belong to the inverse function.
Therefore, you need to search the option that shown the graph wich contains the point (1,-3).
Observe that the Domain f(x) is (-∞,0) then the range of the inverse function must be (-∞,0).
This is the graph of the option C.