1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
3 years ago
5

The value of x 3y , for x = -2 and y = 3, is -24. TrueFalse

Mathematics
2 answers:
LenaWriter [7]3 years ago
8 0
False:))))))))))))))
-2x3x3=-18
Rasek [7]3 years ago
5 0

Answer:

true

Step-by-step explanation:

You might be interested in
Jamil buys a video game for 20% off the original price. He pays $36, excluding sales tax. One week later, he sees an advertiseme
Drupady [299]
He would pay more in this point because 20% is more than 10 US dollars
6 0
3 years ago
Round 14.81 to the nearest tenth
kiruha [24]

Answer: 14.8

Step-by-step explanation: If the number in the hundredths place is less than 5, you must round down. On the contrary, if that number is 5 or greater, you must round up. This applies for rounding to any place not just the tenths place. For example, if you were to round it to the ones place, the answer would be 15.

3 0
2 years ago
Read 2 more answers
Question 3 of 10<br> What is 9C6?<br> O A. 96<br> OB. 10<br> O C. 56<br> O D. 84
koban [17]
The answer is d because
3 0
3 years ago
What is the name of the relationship between ∠1 ​ and ∠5?
mariarad [96]

Answer:

Not sure if im late or not but the answer is A.alternate exterior angles

Step-by-step explanation:

Yeet, Hope this helped! :)

4 0
4 years ago
Read 2 more answers
Suppose that the number of drivers who travel between a particular origin and destination during a designated time period has a
kipiarov [429]

Answer:

a) P(k≤11) = 0.021

b) P(k>23) = 0.213

c) P(11≤k≤23) = 0.777

P(11<k<23) = 0.699

d) P(15<k<25)=0.687

Step-by-step explanation:

a) What is the probability that the number of drivers will be at most 11?

We have to calculate P(k≤11)

P(k\leq11)=\sum_0^{11} P(k

P(k=0) = 20^0e^{-20}/0!=1 \cdot 0.00000000206/1=0\\\\P(k=1) = 20^1e^{-20}/1!=20 \cdot 0.00000000206/1=0\\\\P(k=2) = 20^2e^{-20}/2!=400 \cdot 0.00000000206/2=0\\\\P(k=3) = 20^3e^{-20}/3!=8000 \cdot 0.00000000206/6=0\\\\P(k=4) = 20^4e^{-20}/4!=160000 \cdot 0.00000000206/24=0\\\\P(k=5) = 20^5e^{-20}/5!=3200000 \cdot 0.00000000206/120=0\\\\P(k=6) = 20^6e^{-20}/6!=64000000 \cdot 0.00000000206/720=0\\\\P(k=7) = 20^7e^{-20}/7!=1280000000 \cdot 0.00000000206/5040=0.001\\\\

P(k=8) = 20^8e^{-20}/8!=25600000000 \cdot 0.00000000206/40320=0.001\\\\P(k=9) = 20^9e^{-20}/9!=512000000000 \cdot 0.00000000206/362880=0.003\\\\P(k=10) = 20^{10}e^{-20}/10!=10240000000000 \cdot 0.00000000206/3628800=0.006\\\\P(k=11) = 20^{11}e^{-20}/11!=204800000000000 \cdot 0.00000000206/39916800=0.011\\\\

P(k\leq11)=\sum_0^{11} P(k

b) What is the probability that the number of drivers will exceed 23?

We can write this as:

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))

P(k=12) = 20^{12}e^{-20}/12!=8442485.238/479001600=0.018\\\\P(k=13) = 20^{13}e^{-20}/13!=168849704.75/6227020800=0.027\\\\P(k=14) = 20^{14}e^{-20}/14!=3376994095.003/87178291200=0.039\\\\P(k=15) = 20^{15}e^{-20}/15!=67539881900.067/1307674368000=0.052\\\\P(k=16) = 20^{16}e^{-20}/16!=1350797638001.33/20922789888000=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=27015952760026.7/355687428096000=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=540319055200533/6402373705728000=0.084\\\\

P(k=19) = 20^{19}e^{-20}/19!=10806381104010700/121645100408832000=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=216127622080213000/2432902008176640000=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=4322552441604270000/51090942171709400000=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=86451048832085300000/1.12400072777761E+21=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=1.72902097664171E+21/2.5852016738885E+22=0.067\\\\

P(k>23)=1-\sum_0^{23} P(k=x_i)=1-(P(k\leq11)+\sum_{12}^{23} P(k=x_i))\\\\P(k>23)=1-(0.021+0.766)=1-0.787=0.213

c) What is the probability that the number of drivers will be between 11 and 23, inclusive? What is the probability that the number of drivers will be strictly between 11 and 23?

Between 11 and 23 inclusive:

P(11\leq k\leq23)=P(x\leq23)-P(k\leq11)+P(k=11)\\\\P(11\leq k\leq23)=0.787-0.021+ 0.011=0.777

Between 11 and 23 exclusive:

P(11< k

d) What is the probability that the number of drivers will be within 2 standard deviations of the mean value?

The standard deviation is

\mu=\lambda =20\\\\\sigma=\sqrt{\lambda}=\sqrt{20}= 4.47

Then, we have to calculate the probability of between 15 and 25 drivers approximately.

P(15

P(k=16) = 20^{16}e^{-20}/16!=0.065\\\\P(k=17) = 20^{17}e^{-20}/17!=0.076\\\\P(k=18) = 20^{18}e^{-20}/18!=0.084\\\\P(k=19) = 20^{19}e^{-20}/19!=0.089\\\\P(k=20) = 20^{20}e^{-20}/20!=0.089\\\\P(k=21) = 20^{21}e^{-20}/21!=0.085\\\\P(k=22) = 20^{22}e^{-20}/22!=0.077\\\\P(k=23) = 20^{23}e^{-20}/23!=0.067\\\\P(k=24) = 20^{24}e^{-20}/24!=0.056\\\\

3 0
3 years ago
Other questions:
  • 3:4 and 7:12 Proportional?
    15·1 answer
  • Find f(-2) if f(x) = 2x + 1.​
    14·1 answer
  • A room has an area of 456 square feet. One dimension is 5 feet more than the other. What is the dimensions of the room?
    11·1 answer
  • I really need help with this?
    8·1 answer
  • Mr. Sanchez buys 5 shirts and 3 ties for $34. At
    9·1 answer
  • Please help!!!!! Find the value of the variables
    8·1 answer
  • I need to know this please answer asap
    9·1 answer
  • The admission fee at a small fair is $1.50 for children and $4.00 for adults. On a certain day, $5050 is collected. Write a line
    13·2 answers
  • Which expression represents eight times a number, v?
    7·1 answer
  • I need help with this
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!