Answer:
x° = 11°
<em>Z </em><em>FGI </em><em>=</em><em> </em><em> </em><em>6</em><em>0</em><em>°</em>
Step-by-step explanation:
<em>I</em><em>f</em><em> </em><em>GH</em><em> </em><em>bisects</em><em> </em><em>Z </em><em>FGI</em>
<em>then</em><em> </em><em>Z </em><em>FGH </em><em>=</em><em> </em><em>Z </em><em>H</em><em>GI</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>or,</em><em> </em><em>(</em><em>3</em><em>x</em><em> </em><em>-</em><em> </em><em>3</em><em>)</em><em>°</em><em> </em><em>=</em><em> </em><em>(</em><em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>1</em><em>4</em><em>)</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>or,</em><em> </em><em>3</em><em>x</em><em>°</em><em> </em><em>-</em><em> </em><em> </em><em>4</em><em>x</em><em>°</em><em> </em><em>=</em><em> </em><em>-</em><em> </em><em>1</em><em>4</em><em>°</em><em> </em><em>+</em><em> </em><em>3</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>or,</em><em> </em><em>x°</em><em> </em><em>=</em><em> </em><em>1</em><em>1</em><em>°</em>
<em>Z </em><em>FGI </em><em>=</em><em> </em><em>3</em><em>3</em><em>°</em><em> </em><em>-</em><em> </em><em>3</em><em>°</em><em> </em><em>+</em><em> </em><em>4</em><em>4</em><em>°</em><em> </em><em>-</em><em> </em><em>1</em><em>4</em><em>°</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em> </em><em>6</em><em>0</em><em>°</em>
Answer:
y= 2x
Step-by-step explanation:
The slope is 2
The y-intercept is zero because it intersects the origin so you do not need to right that.
Now just put it is slope-intercept form.
Hope you remember me because I just answered your other question 2 minutes ago! LOL :D
Can you please name me the brainiest in both of those answers. Thanks!
Answer:
24a
Step-by-step explanation:
Answer:
The vertex Q' is at (4,5)
Step-by-step explanation:
Given:
Quadrilateral PQRS undergoes a transformation to form a quadrilateral P'Q'R'S' such that the vertex point P(-5,-3) is transformed to P'(5,3).
Vertex point Q(-4,-5)
To find vertex Q'.
Solution:
Form the given transformation occuring the statement in standard form can be given as:

The above transformation signifies the point reflection in the origin.
For the point P, the statement is:

So, for point Q, the transformation would be:

Since two negatives multiply to give a positive, so, we have:

Answer:
x=-6, y=0
Step-by-step explanation:
Use the 3x-9y=-18 equation and add 9y to both sides to have 3x on its own on the left side. Then, divide by 3 on both sides. Then you'll have x=-6+3y. Plus this back into the 5x+4y=-30 equation and you'll get 5(-6+3y)+4y=-30. Use the distributive property and you'll get -30+15y+4y=-30. Simplify and get -30+19y=-30, then add 30 to both sides and you'll get 19y=0. Divide by 19 on both sides and you'll get y=0. Now that we know y=0, plug that back into the 5x+4y=-30 equation, and you'll get 5x+4(0)=-30. Simplify and you'll get 5x=-30. Divide by 5 on both sides and you'll get x=-6.