There are several type of leadership styles that a manager can exhibit according to the type of subordinates that she or he is managing and the type of situation that he or she is facing. These styles are autocratic, democratic, and laissez-faire.
From these leadership styles, the behavior that best exemplifies one that an autocratic leader would showcase is refusing to consider options from employees.
Answer:
b. $14,939
Explanation:
Property placed in service in 1st year:
Amount $
2nd quarter 15,000
3rd quarter 6,000
4th quarter <u>40,000</u>
Total furnishing at beginning of 2nd Year $61,000
Half Year depreciation rate in 2nd Year as per Macrs table under "7 years life" assets, the applicable depreciation in the 2nd year is 24.49%
Thus, amount of depreciation expense is allowable in the current (second) year of ownership = $61,000 * 24.49% = $14938.90
Answer:
The vectors does not span R3 and only span a subspace of R3 which satisfies x+13y-3z=0
Explanation:
The vectors are given as
![v_1=\left[\begin{array}{c}-4&1&3\end{array}\right] \\v_2=\left[\begin{array}{c}-5&1&6\end{array}\right] \\v_3=\left[\begin{array}{c}6&0&2\end{array}\right]](https://tex.z-dn.net/?f=v_1%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-4%261%263%5Cend%7Barray%7D%5Cright%5D%20%5C%5Cv_2%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D-5%261%266%5Cend%7Barray%7D%5Cright%5D%20%5C%5Cv_3%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D6%260%262%5Cend%7Barray%7D%5Cright%5D)
Now if the vectors would span the
, the rank of the consolidated matrix will be 3 if it is not 3 this indicates that the vectors does not span the
.
So the matrix is given as
![M=\left[\begin{array}{ccc}v_1&v_2&v_3\end{array}\right] \\M=\left[\begin{array}{ccc}-4&5&6\\1&1&0\\3&6&2\end{array}\right]\\](https://tex.z-dn.net/?f=M%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dv_1%26v_2%26v_3%5Cend%7Barray%7D%5Cright%5D%20%5C%5CM%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%265%266%5C%5C1%261%260%5C%5C3%266%262%5Cend%7Barray%7D%5Cright%5D%5C%5C)
In order to calculate the rank, the matrix is reduced to the Row Echelon form as
![\approx \left[\begin{array}{ccc}-4&5&6\\ 0&\frac{9}{4}&\frac{3}{2}\\ 3&6&2\end{array}\right] R_2 \rightarrow R_2+\frac{R_1}{4}](https://tex.z-dn.net/?f=%5Capprox%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%265%266%5C%5C%200%26%5Cfrac%7B9%7D%7B4%7D%26%5Cfrac%7B3%7D%7B2%7D%5C%5C%203%266%262%5Cend%7Barray%7D%5Cright%5D%20R_2%20%5Crightarrow%20R_2%2B%5Cfrac%7BR_1%7D%7B4%7D)
![\approx \left[\begin{array}{ccc}-4&5&6\\ 0&\frac{9}{4}&\frac{3}{2}\\ 0&\frac{39}{4}&\frac{13}{2}\end{array}\right] R_3 \rightarrow R_3+\frac{3R_1}{4}\\](https://tex.z-dn.net/?f=%5Capprox%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%265%266%5C%5C%200%26%5Cfrac%7B9%7D%7B4%7D%26%5Cfrac%7B3%7D%7B2%7D%5C%5C%200%26%5Cfrac%7B39%7D%7B4%7D%26%5Cfrac%7B13%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20R_3%20%5Crightarrow%20R_3%2B%5Cfrac%7B3R_1%7D%7B4%7D%5C%5C)
![\approx \left[\begin{array}{ccc}-4&5&6\\ 0&\frac{39}{4}&\frac{13}{2\\ 0&\frac{9}{4}&\frac{3}{2}}\end{array}\right] R_2\:\leftrightarrow \:R_3](https://tex.z-dn.net/?f=%5Capprox%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%265%266%5C%5C%200%26%5Cfrac%7B39%7D%7B4%7D%26%5Cfrac%7B13%7D%7B2%5C%5C%200%26%5Cfrac%7B9%7D%7B4%7D%26%5Cfrac%7B3%7D%7B2%7D%7D%5Cend%7Barray%7D%5Cright%5D%20R_2%5C%3A%5Cleftrightarrow%20%5C%3AR_3)
![\approx \left[\begin{array}{ccc}-4&5&6\\ 0&\frac{39}{4}&\frac{13}{2}\\ 0&0&0\end{array}\right] R_3 \rightarrow R_3-\frac{3R_2}{13}\\](https://tex.z-dn.net/?f=%5Capprox%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%265%266%5C%5C%200%26%5Cfrac%7B39%7D%7B4%7D%26%5Cfrac%7B13%7D%7B2%7D%5C%5C%200%260%260%5Cend%7Barray%7D%5Cright%5D%20R_3%20%5Crightarrow%20R_3-%5Cfrac%7B3R_2%7D%7B13%7D%5C%5C)
As the Rank is given as number of non-zero rows in the Row echelon form which are 2 so the rank is 2.
Thus this indicates that the vectors does not span 
<em>Now for any vector the corresponding equation is formulated by using the combined matrix which is given as for any arbitrary vector and the coordinate as </em>
<em />
<em />
<em />
<em />
<em />
<em />
<em />
<em />
<em />
<em />
Now converting the combined matrix as
![\approx \left[\begin{array}{ccccc}-4&5&6&|&x\\ 0&\frac{9}{4}&\frac{3}{2}&|&\frac{4y+x}{4}\\ 3&6&2&|&z\end{array}\right] R_2 \rightarrow R_2+\frac{R_1}{4}\\](https://tex.z-dn.net/?f=%5Capprox%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D-4%265%266%26%7C%26x%5C%5C%200%26%5Cfrac%7B9%7D%7B4%7D%26%5Cfrac%7B3%7D%7B2%7D%26%7C%26%5Cfrac%7B4y%2Bx%7D%7B4%7D%5C%5C%203%266%262%26%7C%26z%5Cend%7Barray%7D%5Cright%5D%20R_2%20%5Crightarrow%20R_2%2B%5Cfrac%7BR_1%7D%7B4%7D%5C%5C)
![\approx \left[\begin{array}{ccccc}-4&5&6&|&x\\ 0&\frac{9}{4}&\frac{3}{2}&|&\frac{4y+x}{4}\\ 0&\frac{39}{4}&\frac{13}{2}&|&\frac{4z+3x}{4}\end{array}\right] R_3 \rightarrow R_3+\frac{3R_1}{4}\\](https://tex.z-dn.net/?f=%5Capprox%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D-4%265%266%26%7C%26x%5C%5C%200%26%5Cfrac%7B9%7D%7B4%7D%26%5Cfrac%7B3%7D%7B2%7D%26%7C%26%5Cfrac%7B4y%2Bx%7D%7B4%7D%5C%5C%200%26%5Cfrac%7B39%7D%7B4%7D%26%5Cfrac%7B13%7D%7B2%7D%26%7C%26%5Cfrac%7B4z%2B3x%7D%7B4%7D%5Cend%7Barray%7D%5Cright%5D%20R_3%20%5Crightarrow%20R_3%2B%5Cfrac%7B3R_1%7D%7B4%7D%5C%5C)
![\approx \left[\begin{array}{ccccc}-4&5&6&|&x\\ 0&\frac{39}{4}&\frac{13}{2}&|&\frac{4z+3x}{4}\\ 0&\frac{9}{4}&\frac{3}{2}&|&\frac{4y+x}{4}\end{array}\right] R_3 \leftrightarrow R_2\\](https://tex.z-dn.net/?f=%5Capprox%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D-4%265%266%26%7C%26x%5C%5C%200%26%5Cfrac%7B39%7D%7B4%7D%26%5Cfrac%7B13%7D%7B2%7D%26%7C%26%5Cfrac%7B4z%2B3x%7D%7B4%7D%5C%5C%200%26%5Cfrac%7B9%7D%7B4%7D%26%5Cfrac%7B3%7D%7B2%7D%26%7C%26%5Cfrac%7B4y%2Bx%7D%7B4%7D%5Cend%7Barray%7D%5Cright%5D%20R_3%20%5Cleftrightarrow%20R_2%5C%5C)
![\approx \left[\begin{array}{ccccc}-4&5&6&|&x\\ 0&\frac{39}{4}&\frac{13}{2}&|&\frac{4z+3x}{4}\\ 0&0&0&|&\frac{13y+x-3z}{13}\end{array}\right] R_3 \rightarrow R_3-\frac{3R_2}{13}\\](https://tex.z-dn.net/?f=%5Capprox%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccccc%7D-4%265%266%26%7C%26x%5C%5C%200%26%5Cfrac%7B39%7D%7B4%7D%26%5Cfrac%7B13%7D%7B2%7D%26%7C%26%5Cfrac%7B4z%2B3x%7D%7B4%7D%5C%5C%200%260%260%26%7C%26%5Cfrac%7B13y%2Bx-3z%7D%7B13%7D%5Cend%7Barray%7D%5Cright%5D%20R_3%20%5Crightarrow%20R_3-%5Cfrac%7B3R_2%7D%7B13%7D%5C%5C)
From this it is seen that whatever the values of the coordinates does not effect the value of the plane with equation as

So it is verified that the subspace of R3 such that it satisfies x+13y-3z=0 consists of all vectors.
<em />
I would choose A, it all depends where you open a savings account
Answer:
20%
Explanation:
300÷360×100 =20%. hence 300×100=30000÷100=20%