Answer:
A = 12/5 units
Step-by-step explanation:
USING ALGEBRA:
We can find the intersection point between these two lines;
y = 3x - 6
y = -2x + 8
Set these two equations equal to each other.
3x - 6 = -2x + 8
Add 2x to both sides of the equation.
5x - 6 = 8
Add 6 to both sides of the equation.
5x = 14
Divide both sides of the equation by 5.
x = 14/5
Find the y-value where these points intersect by plugging this x-value back into either equation.
y = 3(14/5) - 6
Multiply and simplify.
y = 42/5 - 6
Multiply 6 by (5/5) to get common denominators.
y = 42/5 - 30/5
Subtract and simplify.
y = 12/5
These two lines intersect at the point 12/5. This is the height of the triangle formed by these two lines and the x-axis.
Now let's find the roots of these equations (where they touch the x-axis) so we can determine the base of the triangle.
Set both equations equal to 0.
(I) 0 = 3x - 6
Add 6 both sides of the equation.
6 = 3x
Divide both sides of the equation by 3.
x = 2
Set the second equation equal to 0.
(II) 0 = -2x + 8
Add 2x to both sides of the equation.
2x = 8
Divide both sides of the equation by 2.
x = 4
The base of the triangle is from (2,0) to (4,0), making it a length of 2 units.
The height of the triangle is 12/5 units.
Formula for the Area of a Triangle:
A = 1/2bh
Substitute 2 for b and 14/5 for h.
A = (1/2) · (2) · (12/5)
Multiply and simplify.
A = 12/5
The area of the region bounded by the lines y = 3x - 6 and y = -2x + 8 between the x-axis is 12/5 units.