The remainder theorem says that dividing a polynomial <em>f(x)</em> by a 1st-degree polynomial <em>g(x)</em> = <em>x</em> - <em>c</em> leaves a remainder of exactly <em>f(c)</em>.
(a) With <em>f(x)</em> = <em>px</em> ³ + 4<em>x</em> - 10 and <em>d(x)</em> = <em>x</em> + 3, we have a remainder of 5, so
<em>f</em> (-3) = <em>p</em> (-3)³ + 4(-3) - 10 = 5
Solve for <em>p</em> :
-27<em>p</em> - 12 - 10 = 5
-27<em>p</em> = 27
<em>p</em> = -1
(b) With <em>f(x)</em> = <em>x</em> + 3<em>x</em> ² - <em>px</em> + 4 and <em>d(x)</em> = <em>x</em> - 2, we have remainder 8, so
<em>f</em> (2) = 2 + 3(2)² - 2<em>p</em> + 4 = 8
-2<em>p</em> = -10
<em>p</em> = 5
(you should make sure that <em>f(x)</em> was written correctly, it's a bit odd that there are two <em>x</em> terms)
(c) <em>f(x)</em> = 2<em>x</em> ³ - 4<em>x</em> ² + 6<em>x</em> - <em>p</em>, <em>d(x)</em> = <em>x</em> - 2, <em>R</em> = <em>f</em> (2) = 18
<em>f</em> (2) = 2(2)³ - 4(2)² + 6(2) - <em>p</em> = 18
12 - <em>p</em> = 18
<em>p</em> = -6
The others are done in the same fashion. You would find
(d) <em>p</em> = 14
(e) <em>p</em> = -4359
(f) <em>p</em> = 10
(g) <em>p</em> = -13/2 … … assuming you meant <em>f(x)</em> = <em>x</em> ⁴ + <em>x</em> ³ + <em>px</em> ² + <em>x</em> + 20
<em><u>below</u></em>
Step-by-step explanation:
- <em><u>The general formula for the total surface area of a cylinder is T. S. A. =2πrh+2πr2 </u></em><em><u>•</u></em>
Answer:
81
Step-by-step explanation:
162 divided by 2
Answer:
2739
Step-by-step explanation:
3000-(52+276:8)-(1750:10)
3000-(52+34)-175
3000-86-175=2739
Answer: 6 eggs
Step-by-step explanation:
Given : The number of eggs required for the original recipe of muffins = 3
If the number of people coming to the meeting has doubled, then the number of eggs you need to make twice as many muffins will be the product of 2 and 3.
i.e. The number of eggs you need to make twice as many muffins = 
Hence, you need 6 eggs to make twice as many muffins.