1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masja [62]
3 years ago
15

When adding two negative numbers,______ the absolute value of the numbers and keep the negative sign.

Mathematics
1 answer:
Kipish [7]3 years ago
7 0
When adding two negative numbers, add the absolute value of the numbers and keep the negative sign.
You might be interested in
A store buys 8 sweaters for $72 and sells them for $370. How much profit does the store make per sweater?
lubasha [3.4K]
They are making a profit of $37.25 per sweater
Explanation:
1-subtract 370 by 72 to get rid of the cost of the sweater which is equal to 298
2- then divide 298 by 8 to get the price of each sweater
5 0
3 years ago
For the function f(x)=5x2−5x, evaluate and simplify.
Marianna [84]

9514 1404 393

Answer:

  10x -5 +5h

Step-by-step explanation:

Use the function definition with the given arguments.

  \dfrac{f(x+h)-f(x)}{h}=\dfrac{(5(x+h)^2-5(x+h))-(5x^2-5x)}{h}\\\\=\dfrac{(5(x^2+2hx+h^2)-5(x+h))-(5x^2-5x)}{h}\\\\=\dfrac{5x^2+10hx+5h^2-5x-5h-5x^2+5x}{h}=\dfrac{10hx-5h+5h^2}{h}\\\\=\boxed{10x-5+5h}

7 0
3 years ago
I WILL MARK BRAINLIEST! :3<br> Find the total cost.<br> Purchase price= $2615 Tax rate= 3%
balu736 [363]

Answer:

78.45

Step-by-step explanation:

u know 3 as decimal is 0.03 so u multiply 2,615*0.03 which is 78.45

8 0
3 years ago
7. License Plate Laws The Chapter Problem involved passenger cars in Connecticut and passenger cars in New York, but here we con
sergejj [24]

Yes it is true that commercial truck owners violate laws requiring front license plates at a higher rate than owners of passenger cars because null hypothesis is rejected.

Given among 2049 Connecticut passenger cars, 239 had only rear license plates. Among 334 Connecticut trucks, 45 had only rear license plates.

let p_{1} be the probability that commercial cars have rear license plates and p_{2} be the probability that connected trucks have rear license plates.

                         Cars                     Trucks                         Total

Total                  2049                    334                             2383

x                          239                      45                                284

p                        0.1166                   0.1347                          0.1191

α=0.05

Hypothesis will be  :

H_{0}:p_{1} =p_{2}

H_{1} :p_{1} < p_{2}

It is a left tailed test at 0.05 significance.

Standard errors of p=\sqrt{p(1-p)/n}

=\sqrt{(0.1191*0.8809)/2383}

=\sqrt{0.1049/2383}        

=0.0066

Test statistic Z=p difference/standard error

=(0.1166-0.1347)/0.0066

=-0.0181/0.0061

=-2.967

p value=0.001505<5%

Since p is less than 5% we reject null hypothesis.

We cannot calculate standard deviation so  we cannot calculate confidence interval.

Hence there is statistical evidence at 5% significance level to support that commercial truck owners violate laws requiring front license plates at a higher rate than owners of passenger cars.

Learn more about z test at brainly.com/question/14453510

#SPJ4

5 0
2 years ago
Solve the system of equations by row-reduction. At each step, show clearly the symbol of the linear combinations that allow you
adell [148]

Answer:

1) The solution of the system is

\left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) The solution of the system is

\left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

Step-by-step explanation:

1) To solve the system of equations

\left\begin{array}{ccccccc}&3x_2&-5x_3&=&89\\6x_1&&+x_3&=&17\\x_1&-x_2&+8x_3&=&-107\end{array}\right

using the row reduction method you must:

Step 1: Write the augmented matrix of the system

\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 2: Swap rows 1 and 2

\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 3:  \left(R_1=\frac{R_1}{6}\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]

Step 4: \left(R_3=R_3-R_1\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]

Step 5: \left(R_2=\frac{R_2}{3}\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]

Step 6: \left(R_3=R_3+R_2\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right]

Step 7: \left(R_3=\left(\frac{6}{37}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 8: \left(R_1=R_1-\left(\frac{1}{6}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 9: \left(R_2=R_2+\left(\frac{5}{3}\right)R_3\right)

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]

Step 10: Rewrite the system using the row reduced matrix:

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right

2) To solve the system of equations

\left\begin{array}{ccccccc}4x_1&-x_2&+3x_3&=&12\\2x_1&&+9x_3&=&-5\\x_1&+4x_2&+6x_3&=&-32\end{array}\right

using the row reduction method you must:

Step 1:

\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 2: \left(R_1=\frac{R_1}{4}\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 3: \left(R_2=R_2-\left(2\right)R_1\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]

Step 4: \left(R_3=R_3-R_1\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 5: \left(R_2=\left(2\right)R_2\right)

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 6: \left(R_1=R_1+\left(\frac{1}{4}\right)R_2\right)

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]

Step 7: \left(R_3=R_3-\left(\frac{17}{4}\right)R_2\right)

\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right]

Step 8: \left(R_3=\left(- \frac{2}{117}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 9: \left(R_1=R_1-\left(\frac{9}{2}\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 10: \left(R_2=R_2-\left(15\right)R_3\right)

\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]

Step 11:

\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right

8 0
3 years ago
Other questions:
  • Two consecutive integers have a sum of 185.find the integers
    11·1 answer
  • What kind of angles are ADB and BDC
    11·1 answer
  • Please I really need help! I will mark as brainliest for the correct answer!
    9·1 answer
  • Can help me with both of these questions plz guys
    15·2 answers
  • 20 pts if you answer 23 AND 24.
    15·1 answer
  • WILL GIVE BRAINLIEST!!!
    11·2 answers
  • The coordinates of the vertices of ABC are A(-5, 2) B(-2, 4), and C(-4, 7). What are the coordinates of the image of A after the
    15·1 answer
  • Which table contains only values that satisfy the equation y = 0.52 + 14?
    12·2 answers
  • Please help :( i don’t understand!
    7·1 answer
  • If p(x)= x⁵ + 3, then find the value of x
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!