(a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2+2ab+2b^2 =The answer
(a + b)^2 = a^2 + 2ab + b^2 => square of sums
(a - b)^2 = a^2 - 2ab + b^2 => square of deference
and of course one of most important ones:
a^2 - b^2 = (a - b)(a + b) => difference of squares
Best Answer: (a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2 + 2ab + 2b^2
a^4 + 4b^4 => i.e. 4a^2b^2 ,
a^4 + 4a^2b^2 + 4b^4 => a^2 + 2ab + b^2 = (a + b)^2, if : a = a^2 , b = 2b^2:
(a^2 + 2b^2)^2 = a^4 + 4a^2b^2 + 4b^4 => We can't add or subtract the value to the expression.
a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2 =>
(a^2 + 2b^2)^2 - 4a^2b^2 =>
(a^2 + 2b^2 - 2ab)(a^2 + 2b^2 + 2ab) =>
(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)
Greetings!
Answer:
80 degrees
Step-by-step explanation:
Sum of the interior angles of a triangle = 180
a + 50 + 50 = 180
a = 80
Ok so I’m assuming the question is how the tall is we need to find the Angle of the sun so
Student : 175
Shadow: 2.3
Hypotenuse: 175.0151136
Using -cos(175/175.0151136) we find the
Suns angle: .753 Above him/her
Our tree’s shadow:8.2
Using the suns angle we use cos(x
Answer:
V ≈ 68.63 cm³
Step-by-step explanation:
the volume (V) of a sphere is calculated as
V =
πr³
the volume of a hemisphere is half the volume of a sphere, so
V =
×
πr³ =
πr³ , then
V =
π × 3.2³
=
π × 32.768
≈ 68.63 cm³ ( to 2 dec. places )