Answer:
If x₁=12 cm then k=1.7985 N/m
If x₂=15 cm then k=1.4388 N/m
Explanation:
Hanging mass= 22 g=0.022 kg
Acceleration due to gravity g=9.81 m/s²
If x₁=displacement= 12 cm=0.12 m
k= spring constant


∴k = 1.7985 N/m
If x₂=15 cm=0.15 m
Force of the hanging mass is same however the spring constant will change

∴k = 1.4388 N/m
As the mass is not changing the spring constant has to change. That means that here there are two spring one with k=1.7985 N/m and the other with k= 1.4388 N/m
<h2>Answer: decibels
</h2>
The decibel
is the relation between two values: the pressure produced by a sound wave and a pressure taken as a reference. Resulting in a dimensionless value.
It should be noted that itself<u> is not a unit of measure</u>, since in reality the unit is bel
(which <u>is not part of the International System of Units</u>) in honor of Alexander Graham Bell.
However, given the amplitude of the measured elements in practice, its submultiple, the decibel, is used. That is, this quotient is a logarithmic expression, where
<h2>Acceleration due to gravity in moon is 1.5 m/s²</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Here the ball travels 3 m less distance in fifth second compared to third second.
That is
s₃ = s₅ + 3
Now we have
Distance traveled in third second, s₃ = u x 3 - 0.5 x g x 3² - u x 2 - 0.5 x g x 2²
s₃ = u - 2.5 g
Also
Distance traveled in fifth second, s₅ = u x 5 - 0.5 x g x 5² - u x 4 - 0.5 x g x 4²
s₅ = u - 4.5 g
That is
u - 2.5 g = u - 4.5 g + 3
2 g = 3
g = 1.5 m/s²
Acceleration due to gravity in moon = 1.5 m/s²
I believe this is known as wave period.
hope this helps!