Answer:
False
Explanation:
Mendel realized that the F2 had a phenotypic ratio 3:1, meaning 3/4 = 75% were yellow and 1/4 = 25% green.
Mendel observed that the F1 expressed only one of the alternative variants (in this case, only yellow seeds appeared), while the other variant (green) disappeared. Mendel named dominant the expressed variant. Mendel allowed auto pollination and observed that in the second generation, F2, the other disappeared variant reappeared. Both alternative variants were present in the F2. Mendel named recessive the second alternative variant.
Mendel thought that hereditary traits determined by discrete factors were the possible explication for these phenotypes. These factors should have been present in the F1 in pairs. One of them came from one parental plant, and the other factor came from the other plant. These factors then separated again when sex cells were produced, giving two types of gametes, each with only one factor.
Mendel concluded that each individual (plant) has a pair of factors (alleles), one for each trait (yellow and green) and that the pair separates (segregates) during the formation of the gametes. This conclusion is known as the segregation principle (First Mendels´ Low).
Answer: Hello :)
Explanation: Speciation and the three selections (directional, disruptive, and stabilizing) all affect biodiversity. ... The affects of this are the evolution of a new species, genetic variation, and an increase in biodiversity. Stabilizing selection is a process by which average individuals in a population are favored.
Answer: Plant cells have a cell wall, chloroplasts and other specialized plastids, and a large central vacuole, which are not found within animal cells.
The Sun is the basic source of energy for the Earth which affect the growth of all living things and the Sun also affect the all the biochemical processes. We know that the amount of radiation from the Sun changes day by day due to the distance of the Earth from the Sun. The rate of Solar energy affects the Earth in two ways.
The rate of solar heating which directly affects the processes like the evaporation and condensation and indirectly it affects the cloud forming processes of the Earth. The rate at which the solar energy reaches the Earth is called as the Total Solar Irradiance or TSI. This affects the climate of the Earth in many ways.
The change in rate of cloud formation increases of decreases with the distance of the Sun from Earth and hence a warm, moderate or cold climate is formed
It also affects the formation of winds due to the low or high pressure in the water bodies and hence affect the climate in the coastal areas.
The tropical areas have hot and humid climate due to the equator which has maximum exposure to the Sun’s heat.
Hence, the Sun is one primary feature that affects the climate in the Earth.