The first step for solving this equation is to determine the defined range.

, x ≠ 1
Remember that when the denominators of both fractions are the same,, you need to set the numerators equal. This will look like the following:

= 5
Take the root of both sides of the equation and remember to use both positive and negative roots.
x +/-
![\sqrt[4]{5}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B5%7D)
Separate the solutions.
x =
![\sqrt[4]{5}](https://tex.z-dn.net/?f=%20%5Csqrt%5B4%5D%7B5%7D)
, x ≠ 1
x = -
Check if the solution is in the defined range.
x =
x = -
This means that the final solution to your question are the following:
x =
x = -
Let me know if you have any further questions.
:)