You didn't type the equation correctly.
Answer:
Step-by-step explanation:
Remember that our original exponential formula was y = a b x. You will notice that in these new growth and decay functions, the b value (growth factor) has been replaced either by (1 + r) or by (1 - r). The growth "rate" (r) is determined as b = 1 + r.
An exponential function of a^x (a>0) is always ln(a)*a^x, as a^x can be rewritten in e^(ln(a)*x). By deriving, the term (ln(a)) gets multiplied with a^x. The derivative shows, that the rate of change is similiar to the function itself. For 0<a<1, ln(a) becomes negative and so is the rate of change.
Linear models are used when a phenomenon is changing at a constant rate, and exponential models are used when a phenomenon is changing in a way that is quick at first, then more slowly, or slow at first and then more quickly.
The length of the median from vertex C is equal to √17. As a median of a triangle is a line segment joining a single vertex to the midpoint of the opposite side of the triangle. In this case, the median will be from vertex C to the mid-point of the triangles side AB.<span> Thus, we can work out the length of the median from vertex C by using the Midpoint formula; M(AB) = (X</span>∨1 + X∨2) /2 ; (Y∨1 + Y∨2) /2 . Giving us the points of the midpoint of side AB, which can be plotted on the cartesian plane. to find the length of the median from vertex C, we can use the distance formula and the coordinates of the midpoint and vertex C , d = √(X∨2 - X∨1) ∧2 + (Y∨2 - Y∨1)∧2.
Answer:

Step-by-step explanation:
Given

Required
Determine the expression for s
The speed is calculated as:

Substitute S for speed

Let the number of books be b and the time be m.
The expression becomes

Hence, the expression for the scenario is:

Answer:
Following are the response to the given question:
Step-by-step explanation:
Move b a bit further if the angle between cd and ab changes when you move b if you want to make a perpendicular point to cd The angle BEC is 90 ° for making the AB line perpendicular to the line CD to transfer point B to the angle between the two lines.