Answer:
ength l = 1 in
width w = 14 in
height h = 2.5 in
diagonal d = 14.3 in
total surface area Stot = 103 in2
lateral surface area Slat = 75 in2
top surface area Stop = 14 in2
bottom surface area Sbot = 14 in2
volume V = 35 in3
The subtraction equation that represents the problem is ( h-477)metres
<h3>Subtraction problem</h3>
Given the following information
- The original height of the helicopter = h meters
If the traffic helicopter descends to hover 477 meters above the ground, then the original height of the helicopter will be:
Original height = h - 477 (Since it is descending)
Hence the subtraction equation that represents the problem is ( h-477) meters
Learn more on subtraction problem here brainly.com/question/220101
1) Discrete graph
2) Continuous graph
I hope this helps! I would check with someone else first though.
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ