1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rom4ik [11]
3 years ago
13

3x+2y=12+y 4y-7x=10 solve

Mathematics
2 answers:
Oliga [24]3 years ago
7 0

Answer:

x=2 y=6

Step-by-step explanation:

Gennadij [26K]3 years ago
6 0

Answer:

x = 2 , y = 6

Step-by-step explanation:

Solve the following system:

{3 x + 2 y = y + 12 | (equation 1)

4 y - 7 x = 10 | (equation 2)

Express the system in standard form:

{3 x + y = 12 | (equation 1)

-(7 x) + 4 y = 10 | (equation 2)

Swap equation 1 with equation 2:

{-(7 x) + 4 y = 10 | (equation 1)

3 x + y = 12 | (equation 2)

Add 3/7 × (equation 1) to equation 2:

{-(7 x) + 4 y = 10 | (equation 1)

0 x+(19 y)/7 = 114/7 | (equation 2)

Multiply equation 2 by 7/19:

{-(7 x) + 4 y = 10 | (equation 1)

0 x+y = 6 | (equation 2)

Subtract 4 × (equation 2) from equation 1:

{-(7 x)+0 y = -14 | (equation 1)

0 x+y = 6 | (equation 2)

Divide equation 1 by -7:

{x+0 y = 2 | (equation 1)

0 x+y = 6 | (equation 2)

Collect results:

Answer:{x = 2 , y = 6

You might be interested in
Kobe collected $18.50 more than amari, and DJ collected $12.25 less than Kobe. Altoghter the three boys collected $95.70. How mu
NNADVOKAT [17]
Dk collected 29.90 $
6 0
3 years ago
Read 2 more answers
Show That The Points(-1, -3), (-4, 7), (2,-13) Are Collinear!!!
GaryK [48]

Answer:

3 Quadrant

2 Quadrant

4 Quadrant

They are Collinear.

Please Mark As Brain list

6 0
2 years ago
Read 2 more answers
Bananas cost $0.54 per lb and grapes cost$1.28 per lb. Leanne bought 2.6 lb of bananas and 3.1 lb of grapes .How much did she pa
slamgirl [31]
So all u have to do is just add $1.28 and $0.54
5 0
4 years ago
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
F(x)=x+ 5<br> g(x) = x-4
TiliK225 [7]
-5 is for f(x)=x+5
4 is for g(x)=x-4
Hope this helps!!
4 0
3 years ago
Other questions:
  • Please help as soon as possible PLEASE
    14·1 answer
  • Joes mechanic shop is 12 miles away. At what rate must you travel to go 12 miles to make your appointment in 0.48 hours?
    14·1 answer
  • Is 0.2 10 times 0.02<br> true or false
    11·1 answer
  • I need help, ive been trying
    10·1 answer
  • (7(19 - 9))/(4 * 5 * 18)
    9·2 answers
  • calculate the mid points of the line segments below using the midpoint formula given two endpoints (9,7) (-8, 10)​
    6·1 answer
  • The volume of a swimming pool is 4x^3 - 20x^2 + 3x - 15 . what is one of the dimensions of the pool
    15·1 answer
  • Will I fail this year, let me know what you think.
    5·1 answer
  • Find the perimeter. Simplify your answer completely.
    11·2 answers
  • Translate the sentence into an inequality.<br><br> The sum of 7 and w is greater than 21.<br><br> ?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!