Part 1) <span>Use the quadratic formula to solve the equation.
4x^2−10x+5=0
we know that
</span>the quadratic formula is
![x=[-b (+/-) \sqrt{b^{2} -4ac}]/ 2a](https://tex.z-dn.net/?f=x%3D%5B-b%20%28%2B%2F-%29%20%5Csqrt%7Bb%5E%7B2%7D%20-4ac%7D%5D%2F%202a)
in this problem
a=4
b=-10
c=5
![x=[10 (+/-) \sqrt{10^{2} -4*(4)*(5)}]/(2*4)\\ x=[10(+/-) \sqrt{20}]/8 \\ x1=[10+ \sqrt{20}]/8 \\ x2=(10- \sqrt{20}]/8](https://tex.z-dn.net/?f=x%3D%5B10%20%28%2B%2F-%29%20%5Csqrt%7B10%5E%7B2%7D%20-4%2A%284%29%2A%285%29%7D%5D%2F%282%2A4%29%5C%5C%20x%3D%5B10%28%2B%2F-%29%20%20%5Csqrt%7B20%7D%5D%2F8%20%20%5C%5C%20x1%3D%5B10%2B%20%5Csqrt%7B20%7D%5D%2F8%20%5C%5C%20x2%3D%2810-%20%5Csqrt%7B20%7D%5D%2F8%20%20%20)
the answer Part 1) is

Part 2) <span> What are the zeros of the function f(x) =x^2+7x−18?
</span>
we have
f(x)=x²+7x-18
equals to zero the function
x²+7x-18=0
Group terms that contain the same variable, and move the
constant to the opposite side of the equation
x²+7x=18
<span>Complete
the square. Remember to balance the equation by adding the same constants
to each side
</span>x²+7x+12.25=18+12.25
Rewrite as perfect squares
(x+3.5)²=30.25-----> square root----> (+/-)[x+3.5]=5.5
(+)[x+3.5]=5.5---> x=5.5-3.5----> x=2
(-)[x+3.5]=5.5----> x=-9
the answer part 2) is
the zero of the function are
x=2 and x=-9
Part 3) question of the picture
