Answer:
Yes I believe so
Step-by-step explanation:
Answer:
Contradiction
Step-by-step explanation:
Suppose that G has more than one cycle and let C be one of the cycles of G, if we remove one of the edges of C from G, then by our supposition the new graph G' would have a cycle. However, the number of edges of G' is equal to m-1=n-1 and G' has the same vertices of G, which means that n is the number of vertices of G. Therefore, the number of edges of G' is equal to the number of vertices of G' minus 1, which tells us that G' is a tree (it has no cycles), and so we get a contradiction.
Answer: the fourth triangle
Step-by-step explanation:
I got it right :)
<span>12/4 irrational or rational number
is a irrational number </span>
The zeros of given function
is – 5 and – 3
<u>Solution:</u>

We have to find the zeros of the function by rewriting the function in intercept form.
By using intercept form, we can put value of y as to obtain zeros of function
We know that, intercept form of above equation is 


Taking “x” as common from first two terms and “3” as common from last two terms
x (x + 5) + 3(x + 5) = 0
(x + 5)(x + 3) = 0
Equating to 0 we get,
x + 5 = 0 or x + 3 = 0
x = - 5 or – 3
Hence, the zeroes of the given function are – 5 and – 3