Answer:
x=-1 is a maximum vaue.
Step-by-step explanation:
To find the minimum and maximum values of the function f(x), we're going to derivate it:
f(x) = –5x^2 – 10x + 6 ⇒ f'(x) = -10x - 10
The points where f'(x) is zero, could be a maximum or a minimum. Then:
f'(x) = -10x - 10 = 0 ⇒ x=-1
Now, to know if x=-1 is a maximum or a minimum, we need to evaluate the original function for x when it tends to -1 from the right and from the left.
Therefore:
For x=-2:
f(x) = 6 (Positive)
For x=0:
f(x) = 6 (Positive)
For x=-1
f(x) = 11 (Positive)
Given that at x=-1, f(x) = 11, and then it goes down to 6 when x=0, we can say that it's a maximum.
Answer:
I have linked the graph in an image
Step-by-step explanation:
1. Simplify y=2/(x+1)-6
2. Subtract the numbers 1-6=-5
3. = 2/x-5
4. Graph your results
Answer:
Step-by-step explanation: 12,061