Answer: $9.50
Step-by-step explanation:Let's define the variables:
A = price of one adult ticket.
S = price of one student ticket.
We know that:
"On the first day of ticket sales the school sold 1 adult ticket and 6 student tickets for a total of $69."
1*A + 6*S = $69
"The school took in $150 on the second day by selling 7 adult tickets and student tickets"
7*A + 7*S = $150
Then we have a system of equations:
A + 6*S = $69
7*A + 7*S = $150.
To solve this, we should start by isolating one variable in one of the equations, let's isolate A in the first equation:
A = $69 - 6*S
Now let's replace this in the other equation:
7*($69 - 6*S) + 7*S = $150
Now we can solve this for S.
$483 - 42*S + 7*S = $150
$483 - 35*S = $150
$483 - $150 = 35*S
$333 = 35*S
$333/35 = S
$9.51 = S
That we could round to $9.50
That is the price of one student ticket.
Hey here is my ans.... Catch it.... ❤️ ❤️ ❤️ Pls mark as brainliest ❤️
F -6*-6 = 36 which is a positive interger
Answer:
$600
Step-by-step explanation:
75*100/450
7500/450
600
<em>Thank me later :)</em>
(<em>Or just give brainliest)</em>
Answer:
<h2>The factory needs to sell 327 packbacks to make at least 9,800 per week.</h2>
Step-by-step explanation:
We know that each backpacks is sold for $40.00.
The goal is to make at least $9,800 per week. With this information we can define the inequality

Where
represents backpacks. Notice that this inequality is about profits, that's why we subtract the cost from the sell price, in this case, the profid margin is $30.00 per backpack, so

Solving for 

Therefore, the factory needs to sell 327 packbacks to make at least 9,800 per week.