first off, let's convert the mixed fraction to improper fraction and then proceed, let's notice that by PEMDAS or order of operations, the multiplication is done first, and then any sums.
![\stackrel{mixed}{1\frac{7}{8}}\implies \cfrac{1\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{15}{8}} \\\\[-0.35em] ~\dotfill\\\\ -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \div \cfrac{1}{2}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \cdot \cfrac{2}{1}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{4} \\\\\\ \cfrac{-3+15}{4}\implies \cfrac{12}{4}\implies 3](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B7%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%208%2B7%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Cdiv%20%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Ccdot%20%5Ccfrac%7B2%7D%7B1%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B-3%2B15%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B4%7D%5Cimplies%203)
Answer:
36 and -1/8
Step-by-step explanation:
x^2 = 3^2 = 9 * 4 = 36
y^-3 = (-2)^-3 = -1/8
There u go tried my best to work it out!! :))
The opposite angles of a quadrilateral are supplementary so you can set them equal to 180.
If there was more information given then i could find the exact values.
Hope this helps :)
Answer:
Hence the pricing for each product will be taronges with 2 euros and mandarins with 2.5 euros.
Step-by-step explanation:
Given:
2 kg of taronges and 3 kg mandarins cost 11.5 euros
3kg taronges and 2 kg mandarins cost 11 euros
To Find:
Price for each product
Solution:
<em>Consider </em>
<em>Taronges =x euros</em>
<em>Mandarins=y euros</em>
So by given condition,
....................equation(1)
and
...........equation (2)
So , using substitution method,

.......equation (3)
Using above value in equation(1) we get ,

)
y=2.5 euros
Using above value in equation(3) we get ,



x=2 euros