Answer:
There offspring will have dimples
Explanation:
If wrong I am sorry.
The correct answer should be D.) Declines in poisonous, non-edible mushroom species in cool climates. Although question B does provide evidence that Global warming could be the cause of the declines, it still doesn't disprove the theory that overharvesting could be the cause as well. Question C could be caused by a number of things, such as deforestation, a local change in climate, removal of agricultural pests, ect. Question A supports the hypothesis that overharvesting is the cause of the decline, instead of disproving it. Hope this helped!
Answer:
i) Glucose
ii) β(1-4) glycosidic bonds.
iii) Oxygen
Explanation:
Cellulose is an important structural carbohydrate found in plants. It forms a major component of the plant cell wall.
Cellulose is a polysaccharide formed by monomers of glucose. These glucose monomers are joined together by covalent bonds called β(1-4) glycosidic bonds, which means that the 1st carbon of one glucose is bound to the 4th carbon of the next glucose. To make this arrangement, every other glucose molecule in cellulose is inverted, which you can see in the diagram.
Glucose monomers contain carbon, hydrogen, and oxygen only. If you look at the pattern of the molecule (remembering every second glucose is inverted), you can see that Z must be O.
The functional group denoted by Z is oxygen. The OH groups on the glucose from one cellulose chain form hydrogen bonds with oxygen atoms on the same or on another chain, holding the chains firmly together and forming very strong molecules - giving cellulose its strength.
Answer:
1) CO₂
2) 0.2551 g
Explanation:
The balanced reactions are:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
MgCO₃ + 2HCl → MgCl₂ + H₂O + CO₂
1) The gas produced is CO₂.
2) Calculate mass of CaCO₃:
(0.5236 g) (0.4230) = 0.2215 g CaCO₃
Convert to moles:
(0.2215 g CaCO₃) (1 mol / 100.1 g) = 0.002213 mol CaCO₃
Find moles of CaCO₃:
(0.002213 mol CaCO₃) (1 mol CO₂ / mol CaCO₃) = 0.002213 mol CO₂
Convert to mass:
(0.002213 mol CO₂) (44.01 g / mol) = 0.09738 g CO₂
Calculate mass of MgCO₃:
(0.5236 g) (0.5770) = 0.3021 g MgCO₃
Convert to moles:
(0.3021 g MgCO₃) (1 mol / 84.31 g) = 0.003583 mol MgCO₃
Find moles of MgCO₃:
(0.003583 mol MgCO₃) (1 mol CO₂ / mol MgCO₃) = 0.003583 mol CO₂
Convert to mass:
(0.003583 mol CO₂) (44.01 g / mol) = 0.1577 g CO₂
Total mass of CO₂:
0.09738 g CO₂ + 0.1577 g CO₂ = 0.2551 g CO₂