1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maru [420]
4 years ago
11

Three times b less than 100 is equal to the product of 6 and b

Mathematics
2 answers:
Vlada [557]4 years ago
5 0

The equation is : 100 -3b = 6b

The solution: variable b = 11.9

<h3>Further Explanation</h3>

One variable linear equation is an equation that has a variable and the exponent number is one. Can be stated in the form:

\large{\boxed{\bold{ax\:=\:b}}}

ax + b = c, where a, b, and c are constants, x is a variable

Whereas the two-variable linear equation is a linear equation that has 2 variables and the exponent is one

Can be stated in the form:

\large{\boxed{\bold{ax+by=c}}}

x, y = variable

In the statement of the task:

three times b less than 100 is equal to the product of 6 and b is  the same as 100 minus 3 times b equals 6 times b.

If we translate this sentence into equation, :

100 -3b = 6b

This equation belongs to One variable linear equation  because there is one variable = b and the exponent number is one

The solution is :

100 = 9b

b = 100 : 9

b = 11.1

<h3>Learn more </h3>

the slope-intercept form of the linear equation

brainly.com/question/1945934

a graph of a linear equation

brainly.com/question/1505806

system of linear equations

brainly.com/question/11544167

Keywords : one variable, linear equation , product, less than, equal to, two variable, constants

Irina-Kira [14]4 years ago
4 0
Not exactly sure which equation you meant:

3(100-b)=6b
300-3b=6b
300=9b
b= about 33

100-3b=6b
100=9b
b=about 11
You might be interested in
Help?? I seriously don’t understand?
Anvisha [2.4K]

Answer:

A

Step-by-step explanation:

3(x-2)

Replace x as 12

3(12-2)

3(10)

3 times 10

30

7 0
3 years ago
2 x y`- 3 y=0
riadik2000 [5.3K]

Answer:

2xy-3y=0

y(2x-3) =0

2x-3=0

2x=3

x=3/2

3 0
3 years ago
How many terms are in (3x^2-3)(3x^2+3)
Marta_Voda [28]

The number of terms in the expression given is; 2.

<h3>How many term are in the expression given?</h3>

It follows from the task content that the expression given is; (3x^2-3)(3x^2+3).

It therefore follows the converse of law regarding difference of two squares that the expression given can be rewritten as;

= 9x⁴ -9

Read more on difference of two squares;

brainly.com/question/3189867

#SPJ1

7 0
2 years ago
Brainliest 5 stars and thank you! (correct answers only)
elena-s [515]

Answer:

Answer -   -5

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • 9(n+3)=7n-3 and steps please
    11·1 answer
  • Write the explicit formula for the arithmetic sequence.
    11·1 answer
  • James and Lin got married and got new jobs. Lin earns $3100 more per year than James. Together they earn $81,980. How much does
    11·1 answer
  • - 2 + 5x - 7 = 3x – 9 + 2x
    5·2 answers
  • A-Plus Auto Body is painting disigns on a customer's car. They had 18 pints of blue paint on hand. They used 1/2 of it for the f
    10·1 answer
  • True or False? Whole Numbers (W) are a subset of Integers (Z)<br> O True<br> False
    8·1 answer
  • Jamal uses 7.56 liters of milk to make milkshakes for him and 11 friends. Each milkshake uses the same
    15·1 answer
  • Q: Out of 20 attempts a basketball player scored 8 times. What percent of
    14·2 answers
  • What is gross income?
    5·1 answer
  • Please help me on this problem !
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!