Answer:
7/6
Step-by-step explanation:
You have correctly graphed the line, so you know that the rate of change is ...
∆d/∆t = 7/6
d changes by 7/6 units for each unit change in t.
√8
for the equations of circles: x²+y²= (radius)²
Explanation:
A sequence is a list of numbers.
A <em>geometric</em> sequence is a list of numbers such that the ratio of each number to the one before it is the same. The common ratio can be any non-zero value.
<u>Examples</u>
- 1, 2, 4, 8, ... common ratio is 2
- 27, 9, 3, 1, ... common ratio is 1/3
- 6, -24, 96, -384, ... common ratio is -4
___
<u>General Term</u>
Terms of a sequence are numbered starting with 1. We sometimes use the symbol a(n) or an to refer to the n-th term. The general term of a geometric sequence, a(n), can be described by the formula ...
a(n) = a(1)×r^(n-1) . . . . . n-th term of a geometric sequence
where a(1) is the first term, and r is the common ratio. The above example sequences have the formulas ...
- a(n) = 2^(n -1)
- a(n) = 27×(1/3)^(n -1)
- a(n) = 6×(-4)^(n -1)
You can see that these formulas are exponential in nature.
__
<u>Sum of Terms</u>
Another useful formula for geometric sequences is the formula for the sum of n terms.
S(n) = a(1)×(r^n -1)/(r -1) . . . . . sum of n terms of a geometric sequence
When |r| < 1, the sum converges as n approaches infinity. The infinite sum is ...
S = a(1)/(1-r)
Answer:
x = 50
R = $2500
Step-by-step explanation:
Given in the question a quadratic equation,
−x² + 100x
To find the selling price, x, which will give highest revenue, y, we will find maximum value of parabola curve −x² + 100x
The value of -b/2a tells you the value x of the vertex of the function
−x² + 100x
here a = -1
b = 100
Selling price = -(100)/2(-1)
= 50
R = −(50)² + 100(50)
= 2500
Answer:
<h2>3.6°</h2>
Step-by-step explanation:
The question is incomplete. Here is the complete question.
Find the angle between the given vectors to the nearest tenth of a degree.
u = <8, 7>, v = <9, 7>
we will be using the formula below to calculate the angle between the two vectors;

is the angle between the two vectors.
u = 8i + 7j and v = 9i+7j
u*v = (8i + 7j )*(9i + 7j )
u*v = 8(9) + 7(7)
u*v = 72+49
u*v = 121
|u| = √8²+7²
|u| = √64+49
|u| = √113
|v| = √9²+7²
|v| = √81+49
|v| = √130
Substituting the values into the formula;
121= √113*√130 cos θ
cos θ = 121/121.20
cos θ = 0.998
θ = cos⁻¹0.998
θ = 3.6° (to nearest tenth)
Hence, the angle between the given vectors is 3.6°