Answer:
See below
Step-by-step explanation:
Do you mean -12(x+5)=-10?
Divide both sides by -12 -> x+5=10/12
Subtract 5 on both sides -> x=10/12-5 -> x=-4 1/6
So x=-4 1/6
Let me know if this wasn't the right equation
Answer:
The sample size to obtain the desired margin of error is 160.
Step-by-step explanation:
The Margin of Error is given as

Rearranging this equation in terms of n gives
![n=\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2](https://tex.z-dn.net/?f=n%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2)
Now the Margin of Error is reduced by 2 so the new M_2 is given as M/2 so the value of n_2 is calculated as
![n_2=\left[z_{crit}\times \dfrac{\sigma}{M_2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{\sigma}{M/2}\right]^2\\n_2=\left[z_{crit}\times \dfrac{2\sigma}{M}\right]^2\\n_2=2^2\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4\left[z_{crit}\times \dfrac{\sigma}{M}\right]^2\\n_2=4n](https://tex.z-dn.net/?f=n_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM_2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%2F2%7D%5Cright%5D%5E2%5C%5Cn_2%3D%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B2%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D2%5E2%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4%5Cleft%5Bz_%7Bcrit%7D%5Ctimes%20%5Cdfrac%7B%5Csigma%7D%7BM%7D%5Cright%5D%5E2%5C%5Cn_2%3D4n)
As n is given as 40 so the new sample size is given as

So the sample size to obtain the desired margin of error is 160.
Answer:
31,148.48
Step-by-step explanation:
29,637*.051= 1,511.48
29,637+1,511.48=31,148.48
Answer:
3/6 = 1/2 = 0.5
Step-by-step explanation:
3 / 6 = 1/2 = 0.5
Second one
1/16
3/8 divided by 1/6=1/16