Answer:
21.77% probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
For proportions p in a sample of size n, we have that 
In this problem:

In a sample of 100 Americans, what is the probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
This is 1 subtracted by the pvalue of Z when X = 0.85. So



has a pvalue of 0.7823
1 - 0.7823 = 0.2177
21.77% probability that the proportion who are satisfied with the way that things are going in their life exceeds 0.85
Answer:
18,432 pi cubic ft
Step-by-step explanation:
This problem can be solved using formula to find circumference and volume of sphere
for any sphere with radius r
circumference of sphere is 2* pi * r
volume of sphere is found by using formula 4/3*(pi*r^2)
Given circumference of sphere is 48 pi ft
therefore
2* pi * r = 48 pi ft
r = 48 pi ft/ 2* pi = 24 ft
substituting the value of r is formula of volume of sphere we have
volume of sphere is = 4/3*(pi*24^3) = 18,432 pi cubic ft
Answer:
B.14
Step-by-step explanation:
Answer:
b. cos²3x - sin²3x = cos6x
if its wrong sorry
hope this helps you☺️☺️