Answer:
Volume of the cone is increasing at the rate
.
Step-by-step explanation:
Given: The radius of a right circular cone is increasing at a rate of
in/s while its height is decreasing at a rate of
in/s.
To find: The rate at which volume of the cone changing when the radius is
in. and the height is
in.
Solution:
We have,
,
,
, 
Now, let
be the volume of the cone.
So,
Differentiate with respect to
.
![\frac{dv}{dt} =\frac{1}{3}\pi \left [ r^2\frac{dh}{dt}+h\left ( 2r \right )\frac{dr}{dt} \right ]](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%20%5Cleft%20%5B%20r%5E2%5Cfrac%7Bdh%7D%7Bdt%7D%2Bh%5Cleft%20%28%202r%20%5Cright%20%29%5Cfrac%7Bdr%7D%7Bdt%7D%20%5Cright%20%5D)
Now, on substituting the values, we get
![\frac{dv}{dt} =\frac{1}{3}\pi\left [ \left ( 134 \right )^2\left ( -2.2 \right )+\left ( 136\right )\left ( 2 \right )\left ( 134 \right )\left ( 1.9 \right ) \right ]](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%5Cleft%20%5B%20%5Cleft%20%28%20134%20%5Cright%20%29%5E2%5Cleft%20%28%20-2.2%20%5Cright%20%29%2B%5Cleft%20%28%20%20136%5Cright%20%29%5Cleft%20%28%202%20%5Cright%20%29%5Cleft%20%28%20134%20%5Cright%20%29%5Cleft%20%28%201.9%20%5Cright%20%29%20%5Cright%20%5D)
![\frac{dv}{dt} =\frac{1}{3}\pi\left [ 29748 \right ]](https://tex.z-dn.net/?f=%5Cfrac%7Bdv%7D%7Bdt%7D%20%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%5Cleft%20%5B%2029748%20%5Cright%20%5D)

Hence, the volume of the cone is increasing at the rate
.
Answer:
x= -8 x=2
Step-by-step explanation:
x^2 +6x - 6 = 10
Subtract 10 from each side
x^2 +6x -16 =0
Factor what 2 numbers multiply to -16 and add to 6
8*-2 = -16
8-2 = 6
(x+8) (x-2) =0
Using the zero product property
x+8 =0 x-2 =0
x= -8 x=2
We have two equations d=55t and d=20g
The left sides of this equations are the same than the right sides are equal too
a) 55t=20g
b) g=(55/20)t
c) t=6h => g=(55/20) *6 = 165/10=16.5 gallons
d= 55t= 55*6=330 miles or d=20g=20*16.5=330 miles
Good luck!!!
Hi there! The answer is C.
We can see a reflection across the x-axis. The x-axis in this figure is an axis of symmetry. When we would measure the distance from a certain point in both of the triangles (the same point in the two triangles), this distance would be the same. Therefore this figure is reflected across the x-axis.