Answer:
![cos(\theta)=(+/-)0.84](https://tex.z-dn.net/?f=cos%28%5Ctheta%29%3D%28%2B%2F-%290.84)
Step-by-step explanation:
we know that
----> by trigonometric identity
we have
![sin(\theta)=0.55](https://tex.z-dn.net/?f=sin%28%5Ctheta%29%3D0.55)
substitute
![(0.55)^2+cos^2(\theta)=1](https://tex.z-dn.net/?f=%280.55%29%5E2%2Bcos%5E2%28%5Ctheta%29%3D1)
![cos^2(\theta)=1-(0.55)^2](https://tex.z-dn.net/?f=cos%5E2%28%5Ctheta%29%3D1-%280.55%29%5E2)
![cos^2(\theta)=0.6975](https://tex.z-dn.net/?f=cos%5E2%28%5Ctheta%29%3D0.6975)
![cos(\theta)=(+/-)\sqrt{0.6975}](https://tex.z-dn.net/?f=cos%28%5Ctheta%29%3D%28%2B%2F-%29%5Csqrt%7B0.6975%7D)
![cos(\theta)=(+/-)0.84](https://tex.z-dn.net/?f=cos%28%5Ctheta%29%3D%28%2B%2F-%290.84)
Remember that
If the sine of angle theta is positive, then the angle theta lie on the I Quadrant or II Quadrant
therefore
If the angle theta is on the I Quadrant the cosine will be positive
If the angle theta is on the II Quadrant the cosine will be negative
Answer:
the answer is 10 you round up a nine it keeps going to the end
Step-by-step explanation:
![slope = \frac{ - 1 - 5}{ - 5 - 5} = \frac{ - 6}{ - 10} = \frac{ 3}{ 5} \\](https://tex.z-dn.net/?f=slope%20%3D%20%20%20%5Cfrac%7B%20-%201%20-%205%7D%7B%20-%205%20-%205%7D%20%20%3D%20%5Cfrac%7B%20-%206%7D%7B%20-%2010%7D%20%20%20%3D%20%5Cfrac%7B%203%7D%7B%205%7D%20%5C%5C%20)
Pizzas cost $8 and sandwiches cost $2.50