Answer:
No, 6 hours would cost $335, 35 over her limit of $300.
Step-by-step explanation:
she has to pay $200 plus 22.50 for every hour she rents. So, if she rents for 6 hours, she has to pay $200 + 6(22.50) or $200 + 135=335. She only has $300 so she can’t afford the event.
Pounds is the correct unit of measure
Answer:
you just need to devide by 2 the second equation
Step-by-step explanation:
- -x + y = 2 (you leave it as it is)
- 2x + 4y =32 => 2x/2 +4y/2 = 32/2
=> x + 2y =16
we can devide or multiply in an equation by any number we want, as long as we do it to every term.
The slopes of the original function y = |x| are m = 1 and m = -1 (m is the variable used to represent slope).
when you add a coefficient (number) in front of |x|, it will either make the slopes steeper or more flat. the larger the value of the coefficient, the steeper the slope will be (vice versa for a coefficient smaller than 1, which would make the slope more flat than the parent(original) function).
because these are absolute value functions, they will have two slopes. one slope for the end going up from left to right, and one for the end going down from left to right. this means that one slope must be positive and the other slope must be negative for each function.
with this in mind, the slopes of y = 2|x| are m = 2 and m = -2. the coefficient of 2 narrows the function by a factor of 2 (it is twice as narrow as the parent function). the same rules apply to y = 4|x| with the slopes of this function as m = -4 and m = 4 (it is 4 times narrower than the parent function).
with the fraction coefficients, the function is being widened. therefore, the slopes of y = 1/2 |x| are m = -1/2 and m = 1/2. the slopes of y = 1/5 |x| are m = -1/5 and m = 1/5.
Answer:
(x - 1) (x + 2) (x + 4)
Step-by-step explanation:
Factor the following:
x^3 + 5 x^2 + 2 x - 8
The possible rational roots of x^3 + 5 x^2 + 2 x - 8 are x = ± 1, x = ± 2, x = ± 4, x = ± 8. Of these, x = 1, x = -2 and x = -4 are roots. This gives x - 1, x + 2 and x + 4 as all factors:
Answer: (x - 1) (x + 2) (x + 4)