Answer:
Animal cells (including humans ofcourse), heterotrophs, derive their energy from coupled oxidation-reduction reactions. Glucose is a primary fuel for heterotrophs. Energy derived from glucose is stored in the form of high-energy phosphate bonds in ATP, or other nucleotide triphosphates, and as energy-rich hydrogen atoms associated with the co-enzymes NADP and NAD .
Glucose is unable to diffuse across the cell membrane without the assistance of transporter proteins. At least 13 hexose transporter proteins with different functions have been identified. Some hexose transporters allow glucose to flow passively from high to low concentration without requiring the expenditure of cell energy. Those that move glucose against its concentration gradient consume energy, generally in the form of ATP.
D-Glucose is the natural form used by animal cells.
So yes it is present inside human cells .
Answer: plucking
Plucking is a type of glacier erosion.Plucking occurs when the ice around the broken rocks, gets displaced with the force exerted by the retreating glacier. The glacier ice plucks the freezed rocks away along with it during glacier erosion.
For the answer to the question above, p<span>unctuated equilibrium (also called punctuated equilibria) is a theory in evolutionary biology which proposes that most species will exhibit little net evolutionary change for most of their geological history, remaining in an extended state called stasis. When significant evolutionary change occurs, the theory proposes that it is generally restricted to rare and rapid (on a geologic time scale) events of branching speciation called cladogenesis. Cladogenesis is the process by which a species splits into two distinct species, rather than one species gradually transforming into another.</span>
Answer
The three metabolic pathways that make up aerobic respiration are really all parts of one larger pathway because the products of early pathways (like NADH) become <u>utilize</u> in the last one.
Explanation
Aerobic respiration is that type of respiration in which glucose molecule is broken down into CO2 and H2O in the presence of oxygen and 36 or 38 ATP molecules are produced.
Aerobic respiration complete in four main steps:
1. Glycolysis
In this step glucose is broken down into 2 molecules of pyruvate acid along with the production of 2 ATP molecules and 2NADH.
2. Oxidation of pyruvate
In this step pyruvate are oxidized in the presence of co-enzyme A to become Acetyl Co-enzyme A. Again 2NADH are formed in this step.
3. Kreb Cycle
It occus in mitochondria. Here acetyle coenzyme A enter Carbon fixation, reduction and regeneration phase. In this cycle 6 NADH, 2FADH2 and 2ATP are formed.
4. Electron transport chain
All NADH that are produced in above steps get oxidize and help in the production of ATP along with the release of electron and proton that help in the formation of water.