1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya692 [45]
2 years ago
10

What is the gcf of 18a and 20ab

Mathematics
2 answers:
oksian1 [2.3K]2 years ago
7 0

Answer:

2

Step-by-step explanation:

the biggest number they can both divide by is 2.

ohaa [14]2 years ago
4 0

Answer:

It is 2a

Step-by-step explanation:

Ok the greatest common factor is the number and/or term common to a seri3s of values so you separate them

the GCF of 18 and 20 is 2

and you also have a and ab

now, what is common to them both

a

<em><u>s</u></em><em><u>o</u></em><em><u> </u></em><em><u>y</u></em><em><u>o</u></em><em><u>u</u></em><em><u> </u></em><em><u>w</u></em><em><u>o</u></em><em><u>u</u></em><em><u>l</u></em><em><u>d</u></em><em><u> </u></em><em><u>g</u></em><em><u>e</u></em><em><u>t</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>gcf</u></em><em><u> </u></em><em><u>a</u></em><em><u>s</u></em><em><u> </u></em><em><u>2</u></em><em><u>a</u></em><em><u> </u></em><em><u>s</u></em><em><u>o</u></em><em><u> </u></em><em><u>i</u></em><em><u>t</u></em><em><u> </u></em><em><u>w</u></em><em><u>ould</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u> </u></em><em><u>w</u></em><em><u>r</u></em><em><u>i</u></em><em><u>t</u></em><em><u>t</u></em><em><u>e</u></em><em><u>n</u></em><em><u> </u></em><em><u>a</u></em><em><u>s</u></em><em><u> </u></em><em><u>2</u></em><em><u>a</u></em><em><u>(</u></em><em><u>9</u></em><em><u>+</u></em><em><u>1</u></em><em><u>0</u></em><em><u>b</u></em><em><u>)</u></em>

You might be interested in
X(2x-5)+x(2x-3)=(4x+6)(x-3)
Helga [31]

Answer:

x=9

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
End of year assessment
tensa zangetsu [6.8K]

Answer:

Don't fail

Step-by-step explanation:

4 0
2 years ago
Prove or disprove (from i=0 to n) sum([2i]^4) &lt;= (4n)^4. If true use induction, else give the smallest value of n that it doe
ddd [48]

Answer:

The statement is true for every n between 0 and 77 and it is false for n\geq 78

Step-by-step explanation:

First, observe that, for n=0 and n=1 the statement is true:

For n=0: \sum^{n}_{i=0} (2i)^4=0 \leq 0=(4n)^4

For n=1: \sum^{n}_{i=0} (2i)^4=16 \leq 256=(4n)^4

From this point we will assume that n\geq 2

As we can see, \sum^{n}_{i=0} (2i)^4=\sum^{n}_{i=0} 16i^4=16\sum^{n}_{i=0} i^4 and (4n)^4=256n^4. Then,

\sum^{n}_{i=0} (2i)^4 \leq(4n)^4 \iff \sum^{n}_{i=0} i^4 \leq 16n^4

Now, we will use the formula for the sum of the first 4th powers:

\sum^{n}_{i=0} i^4=\frac{n^5}{5} +\frac{n^4}{2} +\frac{n^3}{3}-\frac{n}{30}=\frac{6n^5+15n^4+10n^3-n}{30}

Therefore:

\sum^{n}_{i=0} i^4 \leq 16n^4 \iff \frac{6n^5+15n^4+10n^3-n}{30} \leq 16n^4 \\\\ \iff 6n^5+10n^3-n \leq 465n^4 \iff 465n^4-6n^5-10n^3+n\geq 0

and, because n \geq 0,

465n^4-6n^5-10n^3+n\geq 0 \iff n(465n^3-6n^4-10n^2+1)\geq 0 \\\iff 465n^3-6n^4-10n^2+1\geq 0 \iff 465n^3-6n^4-10n^2\geq -1\\\iff n^2(465n-6n^2-10)\geq -1

Observe that, because n \geq 2 and is an integer,

n^2(465n-6n^2-10)\geq -1 \iff 465n-6n^2-10 \geq 0 \iff n(465-6n) \geq 10\\\iff 465-6n \geq 0 \iff n \leq \frac{465}{6}=\frac{155}{2}=77.5

In concusion, the statement is true if and only if n is a non negative integer such that n\leq 77

So, 78 is the smallest value of n that does not satisfy the inequality.

Note: If you compute  (4n)^4- \sum^{n}_{i=0} (2i)^4 for 77 and 78 you will obtain:

(4n)^4- \sum^{n}_{i=0} (2i)^4=53810064

(4n)^4- \sum^{n}_{i=0} (2i)^4=-61754992

7 0
3 years ago
1. Find the Least Common Multiple of these two monomials:<br> See picture
gtnhenbr [62]

Answer:

<em>The last choice is correct</em>

<em />LCM=120a^4b^7c^5<em />

Step-by-step explanation:

<u>Least Common Multiple (LCM)</u>

To find the LCM we can follow this procedure:

List the prime factors of each monomial.

Multiply each factor the greatest number of times it occurs in either factor.

We have two monomials:

12a^4b^2c^5

40a^3b^7c^1

The prime factors of the first monomial are:

2^2,3,a^4,b^2,c^5

The prime factors of the second monomial are:

2^3,5,a^3b^7c^1

LCM = Multiply 2^3*3*5*a^4*b^7*c^5

These are all the factors the greatest number of times they occur.

Operating:

LCM=8*15*a^4*b^7*c^5

\boxed{LCM=120a^4b^7c^5}

The last choice is correct

3 0
3 years ago
URGENTS PLLLLLSSSSSSSSS
Arlecino [84]
Just divide 300 by 4 since 25% is 1/4
300/4 = 75
D. 75
Hope this helps!
5 0
3 years ago
Read 2 more answers
Other questions:
  • Find the error &amp; find the correct answer 2In(x)=In(3x)-[In(9)-2In(3)] In(x^2)=In(3x)-[In(9)-In(9)] In(x^2)=In(3x)-0 In(x^2)=
    9·1 answer
  • The regression equation y=0.5x+1.3 approximates the number of hours it takes to arrange a dinner event, y, given the number of p
    11·1 answer
  • 4[9(5-4)2] what is the answer
    14·1 answer
  • A random sample of house sizes in major city has a sample mean of
    7·1 answer
  • I need help ASAP this is due today
    7·1 answer
  • Solve for X in the triangle. Round your answer to the nearest tenth
    12·1 answer
  • <img src="https://tex.z-dn.net/?f=%20%7B2%7D%5E%7B2%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B3%7D%20%20%20%5Cdiv%20%20%7B2%7D%5E%7B4%7
    10·1 answer
  • Maya drove 715 miles in 13 hours
    7·1 answer
  • what is 2 1/8 - 1 3/8 ? move numbers into the boxes to show the answer if there os no whole number move a 0 to the first box
    7·1 answer
  • The graph represents the heights of two climbers on a climbing wall over a 12-minute time period.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!