Answer:
value of x = 5.8 mm
Step-by-step explanation:
We have given,
Two right triangles EDH and EDG.
In right triangle EDH, EH = 56mm , DH = 35 mm
Using Pythagoras theorem we can find ED.
i.e EH² = ED²+DH²
56²=ED²+35²
ED²=56²-35²
ED = √(56²-35²) = 7√39 = 43.71 mm
Now, Consider right triangle EDG
Here, EG=44.8mm , GD = x+4 and ED = 7√39
Again using Pythagoras theorem,
EG² = ED² + DG²
44.8²= (7√39)²+ (x+4)²
(x+4)² = 44.8² - (7√39)²
x+4 = √(44.8² - (7√39)²)
x+4 = 9.8
or x = 9.8 - 4 = 5.8 mm
Hence we got the value of x = 5.8 mm
Some basic dimensions could be 4x1 and 3x2
Rewrite it in the form a^2 - b^2, where a = 2x and b = 5
(2x)^2 - 5^2
Use the Difference o Squares: a^2 - b^2 = (a + b)(a - b)
<u>(2x + 5)(2x - 5) </u>
Answer:
positive
Step-by-step explanation:
Answer:
There's 2 solution, x= -1 and x= 2
Step-by-step explanation: