<h3><u>Answer;</u></h3>
Active transport uses energy and passive transport does not
<h3><u>Explanation</u>;</h3>
- <u>Passive transport occurs when materials move across cell membranes without using cell energy (ATP). </u> Examples of passive transport include; diffusion, facilitated diffusion, and osmosis. It moves small molecules like water, oxygen, carbon dioxide and glucose.
- <em><u>Active transport on the other hand involves the movement of materials across the cell membrane that requires the use of cell energy (ATP)</u></em>.
- In other words the difference between active transport and passive transport is that passive Transport moves ions from high concentration to low, using no metabolic energy while active Transport moves ions from low concentration to high, using metabolic energy in the form of ATP.
Answer:
Bony Fish
Explanation:
i got it right on my test!
At the smallest level of organization, the DNA wraps itself around small globular proteins called histones. Complexes of histones and DNA form nucleosomes, which appear as "beads" on the DNA strand. Chromatin refers to the decondensed DNA that has not formed separate chromosomes.
Answer:
The reduced form of cytochrome c more likely to give up its electron to oxidized cytochrome a having a higher reduction potential.
Explanation:
Electrons from NADH and FADH2 flow spontaneously from one electron carrier of the electron transport chain to the other. This occurs since the proteins of the ETC are present in the order of increasing reduction potential. The reduced cytochrome b has lower reduction potential than cytochrome c1 which in turn has a lower reduction potential than the cytochrome c.
Cytochrome c is a soluble protein and its single heme accepts an electron from cytochrome b of the Complex III. Now, cytochrome c moves to complex IV which has higher reduction potential and donates the electron to cytochrome a which in turn passes the electrons to O2 via cytochrome a3.