Answer:
268 mg
Step-by-step explanation:
Let A₀ = the original amount of caffeine
The amount remaining after one half-life is ½A₀.
After two half-lives, the amount remaining is ½ ×½A₀ = (½)²A₀.
After three half-lives, the amount remaining is ½ ×(½)²A₀ = (½)³A₀.
We can write a general formula for the amount remaining:
A =A₀(½)ⁿ
where n is the number of half-lives
.
n = t/t_½
Data:
A₀ = 800 mg
t₁ = 10 a.m.
t₂ = 7 p.m.
t_½ = 5.7 h
Calculations:
(a) Calculate t
t = t₂ - t₁ = 7 p.m. - 10 a.m. = 19:00 - 10:00 = 9:00 = 9.00 h
(b) Calculate n
n = 9.00/5.7 = 1.58
(b) Calculate A
A = 800 × (½)^1.58 = 800 × 0.334 = 268 mg
You will still have 268 mg of caffeine in your body at 10 p.m.
I definitely would say True.
Answer:
-12
Step-by-step explanation:
5 + -2 = 3
-4 x 3 = -12
The maximum number of integers is 27 that can be added together before the summation of the A.P. Series exceeds 401.
According to the statement
We have a given that the maximum sum of the positive integers is 400.
And we have to find the value of n which is a maximum number of integers by which the value of sum become 400.
So, to find the value of the n we use the
A.P. Series'Summation formula
According to this,
S = n (n+1)/2
Here the value of s is 401
Then
S = n (n+1)/2
401 = n (n+1)/2
401*2 = n (n+1)
802 =n (n+1)
n (n+1) = 802
n^2 + n -802 =0
By the use of the Discriminant formula the
value of n becomes n = -28 and n = 27.
The negative value of n is neglected.
Therefore the value of n is 27.
So, The maximum number of integers is 27 that can be added together before the summation of the A.P. Series exceeds 401.
Learn more about maximum number of integers here brainly.com/question/24295771
#SPJ4
Answer:
64m^2
Step-by-step explanation:
(20 m + 8m) times 5 devided by 2 + (5 times 6) + (5 times 6) - ( 3 times 12) that gives you 64 m ^2