Answer:
the first one, 5(x-4) + 29
Step-by-step explanation:
Using Laplace transform we have:L(x')+7L(x) = 5L(cos(2t))sL(x)-x(0) + 7L(x) = 5s/(s^2+4)(s+7)L(x)- 4 = 5s/(s^2+4)(s+7)L(x) = (5s - 4s^2 -16)/(s^2+4)
=> L(x) = -(4s^2 - 5s +16)/(s^2+4)(s+7)
now the boring part, using partial fractions we separate 1/(s^2+4)(s+7) that is:(7-s)/[53(s^2+4)] + 1/53(s+7). So:
L(x)= (1/53)[(-28s^2+4s^3-4s^2+35s-5s^2+5s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]L(x)= (1/53)[(4s^3 -37s^2 +40s)/(s^2+4) + (-4s^2+5s-16)/(s+7)]
denoting T:= L^(-1)and x= (4/53) T(s^3/(s^2+4)) - (37/53)T(s^2/(s^2+4)) +(40/53) T(s^2+4)-(4/53) T(s^2/s+7) +(5/53)T(s/s+7) - (16/53) T(1/s+7)
Answer:
The equation of the least-squares regression line for this plot is approximately ŷ = 3.8 + two thirds times x.
Step-by-step explanation:
Answer:
8-x0-36
Step-by-step explanation:
Answer:
55/4
Explanation:
Let's solve your equation step-by-step.
4
/5x−8=3
Step 1: Add 8 to both sides.
4
/5x−8+8=3+8
4
/5
x = 11
Step 2: Multiply both sides by 5/4.
(
5
/4
)*(
4
/5
x)=(
5
/4
)*(11)
x= 55/4
Answer:
x=
55
/4
Hope that helps :)