to graph f (x) + k, move the graph k units up..your answer should be;
y = x ^ 2 + 5/2
I am a number greater than 40,000 and less than 60,000:
40,000 < n < 60,000
This means that:
n = 10,000n₁ + 1,000n₂ + 100n₃ + 11n₄
And also:
4 ≤ n₁ < 6
0 ≤ n₂ ≤ 9
0 ≤ n₃ ≤ 9
0 ≤ n₄ ≤ 9
My ten thousands digit is 1 less than 3 times the sum of my ones digit and tens digit:
n₁ = 3*2n₄ - 1
n₁ = 6n₄ - 1
This means that:
n = 10,000*(6n₄-1) + 1,000n₂ + 100n₃ + 11n₄
n = 60,000n₄ - 10,000 + 1,000n₂ + 100n₃ + 11n₄
n = 60,011n₄ - 10,000 + 1,000n₂ + 100n₃
<span>My thousands digit is half my hundreds digit, and the sum of those two digits is 9:
n</span>₂ = 1/2 * n₃
<span>
n</span>₂ + n₃ = 9
<span>
Therefore:
n</span>₂ = 9 - n₃
<span>
Therefore:
9 - n</span>₃ = 1/2 * n₃
<span>
9 = 1/2 * n</span>₃ + n₃
<span>
9 = 1.5 * n</span>₃
<span>
Therefore:
n</span>₃ = 6
<span>
If n</span>₃=6, n₂=3.
<span>
This means that:
</span>n = 60,011n₄ - 10,000 + 1,000*3 + 100*6
n = 60,011n₄ - 10,000 + 3,000 + 600
n = 60,011n₄ - 6,400
Therefore:
0<n₄<2, so n₄=1.
If n₄=1:
n = 60,011 - 6,400
n = 53,611
Answer:
53,611
The answer is x squared -3x+2
Answer:
5^(3)i^(9)= five cubes times i to the power of 9=125i
Step-by-step explanation:
Raise 5 to the power of 3
rewrite i9 as (i^4)2^i
so, you get 125((i^4)^2i)
i^4=1
125(1^2i)
125i
Answer:
m<HGI=21°
Step-by-step explanation:
we know that
If GH bisects m<FGI then
m<FGH=m<HGI
substitute the values
(2x+1)°=(3x-9)°
solve for x
3x-2x=1+9
x=10°
The measure of angle HGI is equal to
(3x-9)° ------> substitute the value of x
3*10-9=21°
m<HGI=21°