Answer:
-12x
Step-by-step explanation:
36÷(-3)= -12
Answer:
since they are alternate exteriors, we put a equal sign
2x+78=5x+15
next we subtract 78 on both sides
2x+78-78=5x+15-78
2x=5x-63
then we subtract 5x on both sides
2x-5x=5x-5x-63
-3x=-63
after that we divide -3 on both sides
-3x/-3=-63/-3
and the answer is
x=21
Step-by-step explanation:
Answer:
=−2x^2−9x−10
Step-by-step explanation:
would you like an explantion or are you good
Answer:
<h2>x = 140, y = 80</h2>
Step-by-step explanation:

Answer:
g(-4) = -1
g(-1) = -1
g(1) = 3
Explanation:
If you are given a function that is defined by a system of equations associated with certain intervals of x, just find which interval makes x true, and then substitute x into the equation of that interval.
For example, given g(-4), this is an expression which is asking for the value of the equation when x = -4. So -4 is not ≥ 2, so ¼x - 1 will not be used. -4 is also not ≤ -1 and ≤ 2, so -(x - 1)² + 3 will not be used either. So in turn, we will just use -1 which is always -1 so g(-4) will just be -1, right because there is no x variable in -1 so it will always be the same.
Using the same idea as before g(-1) is g(x) when x = -1 so -1 will not be a solution because -1 is not less than -1 (< -1). -1 is not ≥ 2 either so we will be using the second equation because -1 is part of the interval -1≤x≤2 (it is a solution to this inequality), therefore -(x - 1)² + 3 will be used.
As x = -1, -(x - 1)² + 3 = -(-1 - 1)² + 3 = -(-2)² + 3 = -4 + 3 = -1.
It is a coincidence that g(-1) = -1.
Now for g(1), where g(x) has an input of 1 or the value of the function where x = 1, we will not use the first equation because x = 1 → x < -1 → 1 < -1 [this is false because 1 is never less than -1], so we will not use -1.
We will use -(x - 1)² + 3 again because 1 is not ≥ 2, 1≥2 [this is also false]. And -1 ≤ 1 < 2 [This is a true statement]. Therefore g(1) = -(1 - 1)² + 3 = -(0)² + 3 = 3